新型电力系统与综合能源

构建灾害风险图谱提高电力系统安全调度能力

  • 解大 ,
  • 李子怡 ,
  • 田洲 ,
  • 王凯
展开
  • 1 上海电力大学 电气工程学院, 上海 200090
    2 上海交通大学 电子信息与电气工程学院, 上海 200240
    3 国家电网有限公司华东分部, 上海 200120
解 大(1969—),教授,博士生导师,主要研究方向为电力系统、能源互联网、新能源系统分析等;E-mail:xieda@sjtu.edu.cn.

收稿日期: 2023-10-23

  修回日期: 2023-12-29

  录用日期: 2024-01-17

  网络出版日期: 2024-02-20

基金资助

国家电网有限公司华东分部科技项目(SGHD0000AZJS2310392)

Disaster Risk Mapping for Improving Power System Security Dispatch

  • XIE Da ,
  • LI Ziyi ,
  • TIAN Zhou ,
  • WANG Kai
Expand
  • 1 College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
    2 School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    3 East China Branch of State Grid Corporation of China, Shanghai 200120, China

Received date: 2023-10-23

  Revised date: 2023-12-29

  Accepted date: 2024-01-17

  Online published: 2024-02-20

摘要

严重的地质灾害会导致大停电事故,从而影响电网的安全稳定运行.针对地质灾害对电网的影响,提出一种基于灾害风险图谱的电力系统安全调度策略.首先,构建多种灾害影响因子的灾害风险图谱,并将该图谱与输电线路的地理位置相结合,得到输电线路的危险情况;然后,建立电力系统运行风险模型,通过风险综合指标对电力系统的风险情况进行量化分析;最后,以新英格兰地区为例,采用粒子群算法构建发电机和灵活性资源的调节策略,并验证其有效性和可行性.结果表明,所提电力系统安全调度策略可以有效减少包括电力系统越限/重载风险在内的风险综合指标值,增强电网运行的安全性和稳定性.

本文引用格式

解大 , 李子怡 , 田洲 , 王凯 . 构建灾害风险图谱提高电力系统安全调度能力[J]. 上海交通大学学报, 2025 , 59(9) : 1338 -1347 . DOI: 10.16183/j.cnki.jsjtu.2023.535

Abstract

Severe geological disasters can lead to major power outages, posing serious threats to the safe and stable operation of power grids. To address the impact of geologic disasters on power grids, a power system security scheduling strategy based on disaster risk mapping is proposed. First, a disaster risk mapping strategy is constructed based on a variety of disaster impact factors, and the hazardous situation of the transmission line is obtained by overlaying this map with the geographic location of the transmission line. Then, a power system operation risk model is established to quantitatively analyze the risk of the system using composite risk indexes. Finally, a particle swarm algorithm is used to construct the regulation strategy of generators and flexibility resources using the New England power system as a case study to validate the effectiveness and feasibility of the strategy. The results show that the proposed power system security scheduling strategy can effectively reduce the comprehensive risk indicators, including the risk of power system overrun/heavy load, enhancing the security and stability of power grid operations.

参考文献

[1] QIN P H. More than six billion people encountering more exposure to extremes with 1.5 ℃ and 2.0 ℃ warming[J]. Atmospheric Research, 2022, 273: 106165.
[2] MASSON DELMOTTE V, ZHAI P, PIRANI A, et al. Climate change 2021—The physical science basis[J]. Chemistry International, 2021, 43(4): 22-23.
[3] LI C J, LU T, FU B J, et al. Sustainable city development challenged by extreme weather in a warming world[J]. Geography and Sustainability, 2022, 3(2): 114-118.
[4] 刘书豪. 降雨条件下的输电线路滑坡风险评估与预警技术研究[D]. 武汉: 中国地质大学, 2021.
  LIU Shuhao. Research on risk assessment and early warning technology for landslides in power transmission lines under rainfall conditions[D]. Wuhan: China University of Geosciences, 2021.
[5] ZHAO B R, DAI Q, ZHUO L, et al. Accounting for satellite rainfall uncertainty in rainfall-triggered landslide forecasting[J]. Geomorphology, 2022, 398: 108051.
[6] SHOU K J, CHEN J R. On the rainfall induced deep-seated and shallow landslide hazard in Taiwan[J]. Engineering Geology, 2021, 288: 106156.
[7] KIM H, LEE J H, PARK H J, et al. Assessment of temporal probability for rainfall-induced landslides based on nonstationary extreme value analysis[J]. Engineering Geology, 2021, 294: 106372.
[8] HUANG F M, CHEN J W, LIU W P, et al. Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold[J]. Geomorphology, 2022, 408: 108236.
[9] 徐香香. 极端天气下电网故障在线预警及风险评估技术研究[D]. 南京: 东南大学, 2020.
  XU Xiangxiang. Research of risk assessment and online early warning of power grid fault under extreme weather[D]. Nanjing: Southeast University, 2020.
[10] ZHANG H W, WANG Z Q. Human activities and natural geographical environment and their interactive effects on sudden geologic hazard: A perspective of macro-scale and spatial statistical analysis[J]. Applied Geography, 2022, 143: 102711.
[11] LIN J H, CHEN W H, QI X H, et al. Risk assessment and its influencing factors analysis of geological hazards in typical mountain environment[J]. Journal of Cleaner Production, 2021, 309: 127077.
[12] NIU Q F, LIU Y, XIE Y W, et al. Susceptibility assessment of secondary geological disaster based on GIS and Information value methodology for Yushu earthquake region[C]// The 2nd International Conference on Information Science and Engineering. Hangzhou, China: IEEE, 2010: 4098-4101.
[13] LEE S. Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS[J]. Environmental Management, 2004, 34(2): 223-232.
[14] LI Z W, TANG X L, LI L J, et al. GIS-based risk assessment of flood disaster in the Lijiang River Basin[J]. Scientific Reports, 2023, 13(1): 6160.
[15] 陈锐, 刘硕, 贺先强, 等. 计及源网不确定性的风险评估与优化调度[J]. 电力系统及其自动化学报, 2023, 35(5): 19-27.
  CHEN Rui, LIU Shuo, HE Xianqiang, et al. Risk assessment and optimal dispatching considering source-network uncertainties[J]. Proceedings of the CSU-EPSA, 2023, 35(5): 19-27.
[16] 颜文婷, 杨隆, 李长城, 等. 考虑地震攻击交通网影响的配电网韧性评估及提升策略[J]. 上海交通大学学报, 2023, 57(9): 1165-1175.
  YAN Wenting, YANG Long, LI Changcheng, et al. Resilience evaluation and enhancement strategy of distribution network considering impact of seismic attack on transportation networks[J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1165-1175.
[17] 崔伟, 李武璟, 牛拴保, 等. 自然灾害下高风险多重故障集快速生成方法[J]. 电力自动化设备, 2021, 41(4): 197-203.
  CUI Wei, LI Wujing, NIU Shuanbao, et al. Rapid generation method of high risk multiple fault set under natural disaster[J]. Electric Power Automation Equipment, 2021, 41(4): 197-203.
[18] 常康, 徐泰山, 郁琛, 等. 自然灾害下电网运行风险控制策略探讨[J]. 电力系统保护与控制, 2019, 47(10): 73-81.
  CHANG Kang, XU Taishan, YU Chen, et al. Discussion of power system operation risk control strategy in natural disasters[J]. Power System Protection and Control, 2019, 47(10): 73-81.
[19] YU S W, ZHOU S S, QIN J P. Layout optimization of China’s power transmission lines for renewable power integration considering flexible resources and grid stability[J]. International Journal of Electrical Power & Energy Systems, 2022, 135: 107507.
[20] 王薪媛, 蔺红. 综合考虑多类型灵活性资源的主动配电网优化调度方法研究[J]. 可再生能源, 2023, 41(2): 227-235.
  WANG Xinyuan, LIN Hong. Research on optimal scheduling method of active distribution network considering multi-type flexible resources[J]. Renewable Energy Resources, 2023, 41(2): 227-235.
[21] 郭咏涛, 向月, 刘俊勇. 面向高比例清洁能源消纳的含灵活性资源电力系统规划方案优选[J]. 上海交通大学学报, 2023, 57(9): 1146-1155.
  GUO Yongtao, XIANG Yue, LIU Junyong. Optimal planning of power systems with flexible resources for high penetrated renewable energy accommodation[J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1146-1155.
[22] UR REHMAN U. A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation[J]. International Journal of Electrical Power & Energy Systems, 2022, 140: 108090.
[23] 王精, 邢海军, 王华昕, 等. 考虑电动汽车及负荷聚合商参与的综合能源系统优化调度[J]. 上海交通大学学报, 2023, 57(7): 814-823.
  WANG Jing, XING Haijun, WANG Huaxin, et al. Optimal scheduling of integrated energy system considering integration of electric vehicles and load aggregators[J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 814-823.
[24] JIANG W G, RAO P Z, CAO R, et al. Comparative evaluation of geological disaster susceptibility using multi-regression methods and spatial accuracy validation[J]. Journal of Geographical Sciences, 2017, 27(4): 439-462.
[25] 李怡飞, 刘延国, 梁丽萍, 等. 青藏高原高山峡谷地貌区地质灾害危险性评价: 以雅江县为例[J]. 水土保持研究, 2021, 28(3): 364-370.
  LI Yifei, LIU Yanguo, LIANG Liping, et al. Assessment on hazard of geological disasters in alpine and canyon landforms of Qinghai-Tibet Plateau—A case study of Yajiang County[J]. Research of Soil and Water Conservation, 2021, 28(3): 364-370.
[26] 梁丽萍, 刘延国, 唐自豪, 等. 基于加权信息量的地质灾害易发性评价: 以四川省泸定县为例[J]. 水土保持通报, 2019, 39(6): 176-182.
  LIANG Liping, LIU Yanguo, TANG Zihao, et al. Geologic hazards susceptibility assessment based on weighted information value—A case study in Luding County, Sichuan Province[J]. Bulletin of Soil and Water Conservation, 2019, 39(6): 176-182.
[27] KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of ICNN’95-International Conference on Neural Networks. Perth, WA, Australia: IEEE, 1995: 1942-1948.
[28] 徐正清, 肖艳炜, 李群山, 等. 基于灵敏度及粒子群算法的输电断面功率越限控制方法对比研究[J]. 电力系统保护与控制, 2020, 48(15): 177-186.
  XU Zhengqing, XIAO Yanwei, LI Qunshan, et al. Comparative study based on sensitivity and particle swarm optimization algorithm for power flow over-limit control method of transmission section[J]. Power System Protection and Control, 2020, 48(15): 177-186.
[29] ABEGAZ B W. ASCPN-A security evaluation system for cyber power networks[C]// 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference. New York, NY, USA: IEEE, 2019: 809-816.
[30] SU Q Y, CHEN C, SUN Z L, et al. Identification of critical nodes for cascade faults of grids based on electrical PageRank[J]. Global Energy Interconnection, 2021, 4(6): 587-595.
文章导航

/