新型电力系统与综合能源

基于分布式模型预测控制的自适应二次调频策略

  • 曹永吉 ,
  • 张江丰 ,
  • 王天宇 ,
  • 郑可轲 ,
  • 吴秋伟
展开
  • 1.清华大学 清华深圳国际研究生院,广东 深圳 518055
    2.山东大学 智能创新研究院,济南 250101
    3.国网浙江省电力有限公司电力科学研究院,杭州 310006
曹永吉(1992—),副研究员,从事电力系统稳定分析与控制、可再生能源并网及储能技术应用研究.
吴秋伟,教授,博士生导师; E-mail: quiwudtu@163.com.

收稿日期: 2023-08-24

  修回日期: 2023-09-20

  录用日期: 2023-12-15

  网络出版日期: 2024-01-31

基金资助

国家自然科学基金(52177096);山东省自然科学基金(ZR2021QE133);国家电网公司科技资助项目(5108-202219050A-1-1-ZN)

Self-Adaptive Secondary Frequency Regulation Strategy Based on Distributed Model Predictive Control

  • CAO Yongji ,
  • ZHANG Jiangfeng ,
  • WANG Tianyu ,
  • ZHENG Keke ,
  • WU Qiuwei
Expand
  • 1. Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
    2. Academy of Intelligent Innovation, Shandong University, Jinan 250101, China
    3. State Grid Zhejiang Electric Power Co., Ltd. Research Institute, Hangzhou 310006, China

Received date: 2023-08-24

  Revised date: 2023-09-20

  Accepted date: 2023-12-15

  Online published: 2024-01-31

摘要

针对电力系统参数变化导致二次调频适应性降低的问题,提出一种基于分布式模型预测控制(DMPC)的自适应二次调频策略.首先,构建多区域互联系统的二次调频模型,进而基于频率响应轨迹建立各区域系统的参数辨识模型.其次,采用递推最小二乘法求解参数辨识模型,在线更新区域系统的参数.然后,以区域控制偏差最小为目标,利用DMPC优化机组出力,实现二次调频控制.最后,利用算例分析验证了所提方法的有效性.

本文引用格式

曹永吉 , 张江丰 , 王天宇 , 郑可轲 , 吴秋伟 . 基于分布式模型预测控制的自适应二次调频策略[J]. 上海交通大学学报, 2025 , 59(3) : 333 -341 . DOI: 10.16183/j.cnki.jsjtu.2023.352

Abstract

To address the issues of reduced adaptability of secondary frequency regulation caused by changes in power system parameters, a self-adaptive secondary frequency regulation strategy based on distributed model predictive control (DMPC) is proposed. First, a model of a multi-area interconnected power system is built. Based on the frequency response trajectory, a parameter identification model for each area of the system is established. Then, the recursive least square method is used to solve the parameter identification model and update the parameters of each area online. Additionally, with the objective to minimize the area control error (ACE), DMPC is adopted to optimize the power of generators for secondary frequency regulation. Finally, a case study is conducted to demonstrate the effectiveness of the proposed strategy.

参考文献

[1] 赵霞, 梁钰, 孙名轶, 等. AGC机组动态优化调度模型的凸松弛及其双层迭代算法[J]. 电力系统自动化, 2022, 46(17): 228-238.
  ZHAO Xia, LIANG Yu, SUN Mingyi, et al. Convex relaxation and bi-level iterative algorithm for dynamic optimal dispatch model of automatic generation control units[J]. Automation of Electric Power Systems, 2022, 46(17): 228-238.
[2] FANG X, YUAN H Y, TAN J. Secondary frequency regulation from variable generation through uncertainty decomposition: An economic and reliability perspective[J]. IEEE Transactions on Sustainable Energy, 2021, 12(4): 2019-2030.
[3] 李文升, 刘晓明, 曹永吉, 等. 考虑电力系统灵活性的网-储联合规划[J]. 智慧电力, 2023, 51(4): 30-37.
  LI Wensheng, LIU Xiaoming, CAO Yongji, et al. Joint planning of energy storage and transmission line considering power system flexibility[J]. Smart Power, 2023, 51(4): 30-37.
[4] ZHANG Y F, WU S Y, LIN J, et al. Frequency reserve allocation of large-scale RES considering decision-dependent uncertainties[J]. IEEE Transactions on Sustainable Energy, 2024, 15(1): 339-354.
[5] 曹永吉, 张恒旭, 施啸寒, 等. 规模化分布式能源参与大电网安全稳定控制的机制初探[J]. 电力系统自动化, 2021, 45(18): 1-8.
  CAO Yongji, ZHANG Hengxu, SHI Xiaohan, et al. Preliminary study on participation mechanism of large-scale distributed energy resource in security and stability control of large power grid[J]. Automation of Electric Power Systems, 2021, 45(18): 1-8.
[6] 席星璇, 熊敏鹏, 袁家海. 风电场发电侧配置储能系统的经济性研究[J]. 智慧电力, 2020, 48(11): 16-21.
  XI Xingxuan, XIONG Minpeng, YUAN Jiahai. Economy analysis of energy storage system in wind farm generation side[J]. Smart Power, 2020, 48(11): 16-21.
[7] 崔俊涛, 许岩, 文福栓. 基于H2和H鲁棒优化的双馈感应发电机的二次调频策略[J]. 智慧电力, 2022, 50(6): 22-27.
  CUI Juntao, XU Yan, WEN Fushuan. Secondary frequency control policy of doubly-fed induction generators based on H2 and H robust optimization[J]. Smart Power, 2022, 50(6): 22-27.
[8] RODRIGUES Y R, ABDELAZIZ M, WANG L W. D-PMU based secondary frequency control for islanded microgrids[J]. IEEE Transactions on Smart Grid, 2020, 11(1): 857-872.
[9] 周一辰, 覃露, 李永刚. 基于多求和不等式输出反馈Lyapunov判据的时变时滞电力系统二次调频控制[J]. 电网技术, 2021, 45(8): 3247-3258.
  ZHOU Yichen, QIN Lu, LI Yonggang. Secondary frequency modulation control of power system with time-varying delay based on Lyapunov criterion of multi-summation inequality output feedback[J]. Power System Technology, 2021, 45(8): 3247-3258.
[10] KHALGHANI M R, SOLANKI J, KHUSHALANI SOLANKI S, et al. Stochastic secondary frequency control of islanded microgrid under uncertainties[J]. IEEE Systems Journal, 2021, 15(1): 1056-1065.
[11] 李滨, 王靖德, 梁水莹, 等. 基于长短期记忆循环神经网络的AGC实时控制策略[J]. 电力自动化设备, 2022, 42(3): 128-134.
  LI Bin, WANG Jingde, LIANG Shuiying, et al. AGC real-time control strategy based on LSTM recurrent neural network[J]. Electric Power Automation Equipment, 2022, 42(3): 128-134.
[12] 李嘉文, 余涛, 张孝顺, 等. 基于改进深度确定性梯度算法的AGC发电功率指令分配方法[J]. 中国电机工程学报, 2021, 41(21): 7198-7212.
  LI Jiawen, YU Tao, ZHANG Xiaoshun, et al. AGC power generation command allocation method based on improved deep deterministic policy gradient algorithm[J]. Proceedings of the CSEE, 2021, 41(21): 7198-7212.
[13] 韩锐, 吴军, 廖清芬, 等. 基于NSGA-III算法的光-水-火电机组AGC协调优化策略[J]. 智慧电力, 2022, 50(1): 45-52.
  HAN Rui, WU Jun, LIAO Qingfen, et al. AGC coordination and optimization strategy of photovoltaic-hydropower-thermal power units based on NSGA-III algorithm[J]. Smart Power, 2022, 50(1): 45-52.
[14] 孙东磊, 郑志杰, 马逸然, 等. 储能与AGC机组协同的鲁棒调度[J]. 电力自动化设备, 2021, 41(6): 142-149.
  SUN Donglei, ZHENG Zhijie, MA Yiran, et al. Robust dispatching of energy storage coordinated with AGC units[J]. Electric Power Automation Equipment, 2021, 41(6): 142-149.
[15] TAN Y J, MUTTAQI K M, CIUFO P, et al. Enhanced frequency regulation using multilevel energy storage in remote area power supply systems[J]. IEEE Transactions on Power Systems, 2019, 34(1): 163-170.
[16] KASIS A, TIMOTHEOU S, POLYCARPOU M. Optimal secondary frequency regulation with ON-OFF loads in power networks[J]. IEEE Transactions on Control Systems Technology, 2022, 30(6): 2490-2505.
[17] 张圣祺, 袁蓓, 季振东, 等. 基于分布式控制原理的电池储能系统二次调频控制[J]. 电工技术学报, 2019, 34 (Sup.2): 637-645.
  ZHANG Shengqi, YUAN Bei, JI Zhendong, et al. Secondary frequency modulation control of battery energy storage system based on distributed control principle[J]. Transactions of China Electrotechnical Society, 2019, 34 (Sup.2): 637-645.
[18] YI Z K, XU Y L, GU W, et al. Distributed model predictive control based secondary frequency regulation for a microgrid with massive distributed resources[J]. IEEE Transactions on Sustainable Energy, 2021, 12(2): 1078-1089.
[19] 孙舶皓, 汤涌, 仲悟之, 等. 基于分布式模型预测控制的包含大规模风电集群互联系统超前频率控制策略[J]. 中国电机工程学报, 2017, 37(21): 6291-6302.
  SUN Bohao, TANG Yong, ZHONG Wuzhi, et al. Multi-area interconnected power system advanced frequency control strategy considering large scale wind power cluster integration based on DMPC[J]. Proceedings of the CSEE, 2017, 37(21): 6291-6302.
[20] 杨冬锋, 朱军豪, 姜超, 等. 基于分布式模型预测的高比例风电系统多源协同负荷频率控制策略[J]. 电网技术, 2024, 48(7): 2804-2814.
  YANG Dongfeng, ZHU Junhao, JIANG Chao, et al. Multi-area interconnected power system advanced frequency control strategy considering large scale wind power cluster integration based on DMPC[J]. Power System Technology, 2024, 48(7): 2804-2814.
[21] PATHAK N, BHATTI T S, VERMA A, et al. AGC of two area power system based on different power output control strategies of thermal power generation[J]. IEEE Transactions on Power Systems, 2018, 33(2): 2040-2052.
[22] 徐清文, 曹永吉, 张恒旭, 等. 考虑暂态调频能力的虚拟电厂预防控制方法[J]. 电力系统自动化, 2022, 46(18): 83-89.
  XU Qingwen, CAO Yongji, ZHANG Hengxu, et al. Preventative control method for virtual power plant considering transient frequency regulation capability[J]. Automation of Electric Power Systems, 2022, 46(18): 83-89.
[23] 曹永吉, 张恒旭, 谢宇峥, 等. 暂态低频高压驱动的直流馈入电网减负荷紧急轮配置方案[J]. 电力系统自动化, 2019, 43(6): 156-162.
  CAO Yongji, ZHANG Hengxu, XIE Yuzheng, et al. Configuration scheme of emergency load shedding for HVDC receiving-end power grid based on transient low-frequency and high-voltage features[J]. Automation of Electric Power Systems, 2019, 43(6): 156-162.
[24] CAO Y J, ZHANG H X, ZHANG Y, et al. Extending SFR model to incorporate the influence of thermal states on primary frequency response[J]. IET Generation, Transmission & Distribution, 2020, 14(19): 4069-4078.
[25] 刘校销, 郑涛, 黄婷. 基于等效漏电感参数辨识的磁控式并联电抗器匝间故障保护方案[J]. 电工技术学报, 2020, 35(1): 134-145.
  LIU Xiaoxiao, ZHENG Tao, HUANG Ting. Protection scheme based on the identification of equivalent leakage inductance against turn-to-turn fault of magnetically controlled shunt reactor[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 134-145.
[26] 黄依婷, 沈建新, 王云冲, 等. 基于递推最小二乘法观测器的永磁同步伺服电机变参数滑模控制[J]. 中国电机工程学报, 2022, 42(18): 6835-6846.
  HUANG Yiting, SHEN Jianxin, WANG Yunchong, et al. Variable parameter sliding mode control of permanent magnet synchronous servo machine based on recursive least square observer[J]. Proceedings of the CSEE, 2022, 42(18): 6835-6846.
[27] 叶林, 陈超宇, 张慈杭, 等. 基于分布式模型预测控制的风电场参与AGC控制方法[J]. 电网技术, 2019, 43(9): 3261-3270.
  YE Lin, CHEN Chaoyu, ZHANG Cihang, et al. Wind farm participating in AGC based on distributed model predictive control[J]. Power System Technology, 2019, 43(9): 3261-3270.
文章导航

/