新型电力系统与综合能源

基于实时碳强度评估的社区综合能源系统低碳互动管理策略

  • 高波 ,
  • 李飞 ,
  • 史轮 ,
  • 陶鹏 ,
  • 石振刚 ,
  • 张超 ,
  • 彭杰 ,
  • 赵一伊
展开
  • 1.国网河北省电力有限公司 营销服务中心, 石家庄 050035
    2.华北电力大学 电气与电子工程学院,北京 102206
高 波(1989—),工程师,主要从事用电信息采集研究工作.
彭 杰,博士生;E-mail:2248257810@qq.com.

收稿日期: 2023-07-20

  修回日期: 2023-12-03

  录用日期: 2023-12-22

  网络出版日期: 2024-01-02

基金资助

国网河北省电力公司科技项目(SGHEYX00SCJS2100192)

A Low-Carbon Interactive Management Strategy for Community Integrated Energy System Based on Real-Time Carbon Intensity Assessment

  • GAO Bo ,
  • LI Fei ,
  • SHI Lun ,
  • TAO Peng ,
  • SHI Zhengang ,
  • ZHANG Chao ,
  • PENG Jie ,
  • ZHAO Yiyi
Expand
  • 1. Market Service Center, State Grid Hebei Electric Power Co., Ltd., Shijiazhuang 050035, China
    2. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China

Received date: 2023-07-20

  Revised date: 2023-12-03

  Accepted date: 2023-12-22

  Online published: 2024-01-02

摘要

随着需求侧能耗的日益提升,居民用户能源消费产生了大量的碳排放,居民社区具有较大的减排潜力.针对社区综合能源系统低碳经济运行问题,考虑能-碳价格的联动,建立了基于实时碳强度评估的综合能源系统低碳互动管理策略.首先建立了社区综合能源系统架构,在此基础上提出了考虑消纳等效碳减排量的居民侧碳排放计量方法.其次,设计基于实时碳强度评估的低碳需求响应机制,引导用户通过多能互补实现碳减排和新能源消纳.然后,建立了综合能源系统供给侧调度模型和用户侧响应模型,通过供需双侧的多能耦合和供需互动实现低碳经济运行.最后,通过仿真验证了所提实时碳强度评估机制能够有效降低综合能源系统碳排放.

本文引用格式

高波 , 李飞 , 史轮 , 陶鹏 , 石振刚 , 张超 , 彭杰 , 赵一伊 . 基于实时碳强度评估的社区综合能源系统低碳互动管理策略[J]. 上海交通大学学报, 2025 , 59(5) : 580 -591 . DOI: 10.16183/j.cnki.jsjtu.2023.329

Abstract

With increasing energy consumption on the demand side, residential energy use has become a significant source of carbon emissions, which presents a substantial opportunity for emission reduction. This paper focuses on the low-carbon economic operation of community comprehensive energy systems, considering the linkage between energy and carbon prices, and proposes a low-carbon interactive management strategy for comprehensive energy systems based on real-time carbon intensity assessment. First, it establishes a community comprehensive energy system architecture, and introduces a residential carbon emission measurement method considering equivalent carbon emission reduction. Next, it designs a low-carbon demand response mechanism based on real-time carbon intensity assessment to encourage users to reduce carbon emission and increase new energy consumption through multi energy complementarity. Then, it develops a comprehensive energy system supply side scheduling model and a user side response model for the integrate energy system, aiming to achieve low-carbon economic operation through multi energy coupling and supply-demand interaction. Finally, the simulation results demonstrate that the proposed real-time carbon intensity assessment mechanism can effectively reduce carbon emissions in the integrated energy systems.

参考文献

[1] 张沈习, 王丹阳, 程浩忠, 等. 双碳目标下低碳综合能源系统规划关键技术及挑战[J]. 电力系统自动化, 2022, 46(8): 189-207.
  ZHANG Shenxi, WANG Danyang, CHENG Hao-zhong, et al. Key technologies and challenges for low-carbon integrated energy system planning under dual-carbon goals[J]. Automation of Electric Power Systems, 2022, 46(8): 189-207.
[2] XIANG Y, FANG M Q, LIU J Y, et al. Distributed dispatch of multiple energy systems considering carbon trading[J]. CSEE Journal of Power and Energy Systems, 2023, 9(2): 459-469.
[3] 张程, 匡宇, 陈文兴, 等. 计及电动汽车充电方式与多能耦合的综合能源系统低碳经济优化运行[J]. 上海交通大学学报, 2024, 58(5): 669-681.
  ZHANG Cheng, KUANG Yu, CHEN Wenxing, et al. Low-carbon economic optimization operation of integrated energy system considering electric vehicle charging modes and multi-energy coupling[J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 669-681.
[4] 刘妍, 胡志坚, 陈锦鹏, 等. 含碳捕集电厂与氢能多元利用的综合能源系统低碳经济调度[J]. 电力系统自动化, 2024, 48(1): 31-40.
  LIU Yan, HU Zhijian, CHENG Jinpeng, et al. Low-carbon economic scheduling of integrated energy system with carbon capture power plants and multi-utilization of hydrogen energy[J]. Automation of Electric Power Systems, 2024, 48(1): 31-40.
[5] 孙毅, 谷家训, 郑顺林, 等. 考虑广义储能和LCA碳排放的综合能源系统低碳优化运行策略[J]. 上海交通大学学报, 2024, 58(5): 647-658.
  SUN Yi, GU Jiaxun, ZHENG Shunlin, et al. Low-carbon optimization operation strategy of integrated energy system considering generalized energy storage and LCA carbon emissions[J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 647-658.
[6] ALOMOUSH M I. Microgrid combined power-heat economic-emission dispatch considering stochastic renewable energy resources, power purchase and emission tax[J]. Energy Conversion and Management, 2019, 200: 112090.
[7] LYU X, LIU T, LIU X, et al. Low-carbon robust economic dispatch of park-level integrated energy system considering price-based demand response and vehicle-to-grid[J]. Energy, 2023, 263(B): 125739.
[8] ZHU X, SUN Y, YANG J, et al. Day-ahead energy pricing and management method for regional integrated energy systems considering multi-energy demand responses[J]. Energy, 2022, 251: 123914.
[9] YANG D F, XU Y, LIU X J, et al. Economic-emission dispatch problem in integrated electricity and heat system considering multi-energy demand response and carbon capture technologies[J]. Energy, 2022, 253:124153.
[10] YUAN G X, GAO Y, YE B, et al. Optimal dispatching strategy and real-time pricing for multi-regional integrated energy systems based on demand response[J]. Renewable Energy, 2021, 179: 1424-1446.
[11] LI P, WANG Z X, WANG N, et al. Stochastic robust optimal operation of community integrated energy systems based on integrated demand response[J]. International Journal of Electrical Power & Energy Systems, 2021, 128: 106735.
[12] GOH H H, SHI S W, LIANG X, et al. Optimal energy scheduling of grid-connected microgrids with demand side response considering uncertainty[J]. Applied Energy, 2022, 327: 120094.
[13] EDUARDO C B, KIYOTO T, ANDREJ K, et al. 2006 IPCC guidelines for national greenhouse gas inventories[M]. UK: Cambridge University Press, 2007: 10-28.
[14] LU Q, GUO Q, ZENG W, et al. Optimization scheduling of integrated energy service systems in the community: A bi-layer optimization model considering multi-energy demand response and user satisfaction[J]. Energy, 2022, 252: 124063.
[15] LI L, ZHANG S, CAO X, et al. Assessing economic and environmental performance of multi-energy sharing communities considering different carbon emission responsibilities under the carbon tax policy[J]. Journal of Cleaner Production, 2021, 328: 129466.
[16] KANG C Q, ZHOU T R, CHEN Q X, et al. Carbon emission flow in networks[J]. Scientific Reports, 2012, 2(1): 479.
[17] CHENG Y, ZHANG N, ZHANG B, et al. Low-carbon operation of multiple energy systems based on energy-carbon integrated prices[J]. IEEE Transactions on Smart Grid, 2019, 11(2): 1307-1318.
[18] 李姚旺, 张宁, 杜尔顺, 等. 基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J]. 中国电机工程学报, 2022, 42(8): 2830-2842.
  LI Yaowang, ZHANG Ning, DU Ershun, et al. Research and benefit analysis of low-carbon demand response mechanism in power systems based on carbon emission flow[J]. Proceedings of the CSEE, 2022, 42(8): 2830-2842.
[19] YAN Z C, LI C Y, YAO Y M, et al. Bi-level carbon trading model on demand side for integrated electricity-gas system[J]. IEEE Transactions on Smart Grid, 2023, 14(4): 2681-2696.
[20] 中华人民共和国生态环境部. 企业温室气体排放核算方法与报告指南——发电设施(2022年修订版) [EB/OL]. (2022-12-21) [2023-07-20]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202212/t20221221_1008430.html .
  Ministry of Ecology and Environment of the People’s Republic of China. Accounting methods and reporting guidelines for greenhouse gas emissions of enterprises—Generating facility (revised in 2022) [EB/OL]. (2022-12-21) [2023-07-20]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202212/t20221221_1008430.html .
[21] 北京市市场监督管理局. 二氧化碳排放核算和报告要求——电力生产业:DB11/T 1781—2020[EB/OL]. (2021-01-01) [2023-07-20]. https://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/sthjlyzwg/ydqhbh/10914037/index.html .
  Beijing Market Supervision Administration. Requirements for carbon dioxide emission accounting and reporting—Power generation enterprises:DB11/T 1781—2020[EB/OL]. (2021-01-01) [2023-07-20]. https://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/sthjlyzwg/ydqhbh/10914037/index.html .
文章导航

/