船舶海洋与建筑工程

基于支持向量回归的破损船舶横摇运动快速预报

  • 刘涵 ,
  • 苏焱 ,
  • 张国强
展开
  • 中山大学 海洋工程与技术学院,广东 珠海 519000
刘 涵(2001—),硕士生,从事船舶运动研究.
苏 焱,副教授;E-mail:suyan23@mail.sysu.edu.cn.

收稿日期: 2023-08-31

  修回日期: 2023-11-19

  录用日期: 2023-12-08

  网络出版日期: 2023-12-13

基金资助

国家重点研发计划(2021YFC2800700)

Fast Prediction for Roll Motion of a Damaged Ship Based on SVR

  • LIU Han ,
  • SU Yan ,
  • ZHANG Guoqiang
Expand
  • School of Ocean Engineering and Technology, Sun Yat-Sen University, Zhuhai 519000, Guangdong, China

Received date: 2023-08-31

  Revised date: 2023-11-19

  Accepted date: 2023-12-08

  Online published: 2023-12-13

摘要

基于ANSYS-AQWA求解破损舰船DTMB5415在多个工况下的横摇运动响应,通过与文献结果对比验证数值模型的有效性,并基于数值结果构建破损船舶横摇运动响应数据库;采用支持向量回归算法对横摇运动数据库进行辨识建模,探究工况要素与横摇运动方程系数之间的关系,构建横摇运动响应快速预报模型并进行验证.该方法相较于传统计算流体力学模型,预报效率显著提高.

本文引用格式

刘涵 , 苏焱 , 张国强 . 基于支持向量回归的破损船舶横摇运动快速预报[J]. 上海交通大学学报, 2025 , 59(7) : 1041 -1049 . DOI: 10.16183/j.cnki.jsjtu.2023.431

Abstract

ANSYS-AQWA is applied to analyze the rolling motion response of the damaged ship DTMB5415 under various working conditions. The results are compared with those in exiting literature to validate the practicality of the hydrodynamic model. Additionly, the rolling motion response database for the damaged ship is constructed. The support vector regression (SVR) algorithm is used to model the rolling motion database for identification, exploring the relationship between the operating condition factors and coefficients in the equation of roll motion. Finally, a fast prediction model for rolling motion is constructed and validated, offering a significant improvement in the prediction efficiency compared with traditional computational fluid dynamics models.

参考文献

[1] XU S, GAO Z, XUE W. CFD database method for roll response of damaged ship during quasi-steady flooding in beam waves[J]. Applied Ocean Research, 2022, 126: 103282.
[2] 欧珊, 毛筱菲, 刘祖源, 等. 基于OpenFOAM的破损船舶横摇阻尼[J]. 上海交通大学学报, 2019, 53(3): 305-314.
  OU Shan, MAO Xiaofei, LIU Zuyuan, et al. Roll damping of damaged ship based on OpenFOAM[J]. Journal of Shanghai Jiao Tong University, 2019, 53(3): 305-314.
[3] The Stability in Waves Committee. Final report and recommendations to the 28th ITTC[C]// Proceedings of the 28th ITTC. Wuxi, China: International Towing Tank Conference, 2017(III):275-335.
[4] The Specialist Committee on Stability in Waves. Final report and recommendations to the 25th ITTC[C]// Proceedings of the 25th ITTC. Fukuoka, Japan: International Towing Tank Conference, 2008(II):605-639.
[5] ACANFORA M, BEGOVIC E, DE LUCA F. A fast simulation method for damaged ship dynamics[J]. Journal of Marine Science and Engineering, 2019, 7(4): 111-119.
[6] MENG Y, ZHANG X, ZHU J. Parameter identification of ship motion mathematical model based on full-scale trial data[J]. International Journal of Naval Architecture and Ocean Engineering, 2022, 14: 100437.
[7] CHEN H, LI Q, WANG Z. Improved maximum likelihood method for ship parameter identification[C]// 2018 37th Chinese Control Conference. Wuhan, China: IEEE, 2018: 1614-1621.
[8] ZHENG J, YAN M, LI Y, et al. An online identification approach for a nonlinear ship motion model based on a receding horizon[J]. Transactions of the Institute of Measurement and Control, 2021, 43(13): 3000-3012.
[9] 徐锋, 邹早建, 宋鑫. 基于支持向量机的水下运载器平面操纵运动建模[J]. 上海交通大学学报, 2012, 46(3): 358-362.
  XU Feng, ZOU Zaojian, SONG Xin. Modeling of underwater vehicles’ planar maneuvering motion based on support vector machines[J]. Journal of Shanghai Jiao Tong University, 2012, 46(3): 358-362.
[10] 张心光. 基于支持向量回归机的船舶操纵运动在线辨识建模[J]. 船舶工程, 2019, 41(3): 98-101.
  ZHANG Xinguang. Online identification modeling of ship manoeuvring motion using support vector regression[J]. Ship Engineering, 2019, 41(3): 98-101.
[11] WANG Z, XU H, XIA L, et al. Kernel-based support vector regression for nonparametric modeling of ship maneuvering motion[J]. Ocean Engineering, 2020, 216: 107994.
[12] ZHU M, WEN Y, SUN W, et al. A novel adaptive weighted least square support vector regression algorithm-based identification of the ship dynamic model[J]. IEEE Access, 2019, 7: 128910-128924.
[13] BEGOVIC E, DAY A H, INCECIK A. An experimental study of hull girder loads on an intact and damaged naval ship[J]. Ocean Engineering, 2017, 133: 47-65.
[14] 黄柏刚, 邹早建. 基于固定网格小波神经网络的不规则波中船舶横摇运动在线预报[J]. 船舶力学, 2020, 24(6): 693-705.
  HUANG Baigang, ZOU Zaojian. Online prediction of ship roll motion in irregular waves using a fixed grid wavelet network[J]. Journal of Ship Mechanics, 2020, 24(6): 693-705.
[15] 沈文君, 赵志娟, 刘利琴, 等. 波浪周期对小型船舶动力响应的影响研究[J]. 船舶力学, 2022, 26(3): 342-352.
  SHEN Wenjun, ZHAO Zhijuan, LIU Liqin, et al. Research of wave period effect on the dynamic response characteristics of a small ship[J]. Journal of Ship Mechanics, 2022, 26(3): 342-352.
[16] HAN H, WANG W. A hybrid BPNN-GARF-SVR prediction model based on EEMD for ship motion[J]. CMES-Computer Modeling in Engineering & Sciences, 2023, 134(2): 1353-1370.
文章导航

/