机械与动力工程

考虑维修效果差异性的顺序预防性维修策略

展开
  • 1.重庆大学 机械与运载工程学院, 重庆 400044
    2.重庆大学 机械传动国家重点实验室, 重庆 400044
    3.重庆文理学院 智能制造工程学院, 重庆 402160
黎新龙(1993-),博士生,从事维修决策与优化研究.

收稿日期: 2022-01-24

  修回日期: 2022-02-28

  录用日期: 2022-08-10

  网络出版日期: 2023-12-01

基金资助

国家自然科学基金(51835001);机械传动国家重点实验室自主研究课题(SKLMT-ZZKT-2021R06)

Sequential Preventive Maintenance Strategy Considering Difference of Maintenance Effect

Expand
  • 1. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China
    2. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
    3. School of Intelligent Manufacturing Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China

Received date: 2022-01-24

  Revised date: 2022-02-28

  Accepted date: 2022-08-10

  Online published: 2023-12-01

摘要

合适的预防性维修在一定程度上能提高设备可靠性,延长设备寿命.针对目前预防性维修策略决策粒度过大且鲜有考虑预防性维修对不同类型故障维修效果的差异性等问题,研究了元动作单元的不完全顺序预防性维修策略.以元动作单元为研究载体,将故障分为损伤类故障和本质疲劳类故障,基于广义几何过程(GGP)建立了考虑维修效果差异性的顺序预防性维修优化模型,分析了维修成本等因数对最优维修成本率以及最优维修策略的影响.研究表明:不考虑预防性维修效果的差异性会低估总体的维修成本率.同时,各类型维修成本、故障比例因子以及预防性维修效果参数都对维修策略的制定有显著影响.该研究对制定元动作单元顺序预防性维修策略,减少其维修成本具有一定的指导作用.

本文引用格式

黎新龙, 冉琰, 张根保, 何彦 . 考虑维修效果差异性的顺序预防性维修策略[J]. 上海交通大学学报, 2023 , 57(11) : 1522 -1530 . DOI: 10.16183/j.cnki.jsjtu.2022.023

Abstract

Proper preventive maintenance can improve equipment reliability and prolong equipment life to a certain extent. Aimed at the problems that the decision granularity of the current preventive maintenance strategy is too large and the maintenance effect of preventive maintenance on different types of failures is rarely considered, the imperfect sequential preventive maintenance strategy of the meta-action unit is studied. Taking the meta-action unit as the research carrier, the failures are divided into damage failure and essential fatigue failure according to the difference of preventive maintenance effect. Based on the generalized geometric process, a sequential preventive maintenance optimization model is established. The research shows that the overall maintenance cost rate will be underestimated without considering the differences in preventive maintenance effectiveness. At the same time, various types of maintenance costs, the proportion factor of damage-type failures and intrinsic fatigue-type failures, and the preventive maintenance effect parameter have a significant influence on the formulation of maintenance strategy. This research has a certain guiding role in formulating the sequential preventive maintenance strategy of meta-action unit and reducing its maintenance cost.

参考文献

[1] 杜煜, 李雨青, 张秀芳, 等. 考虑广义时间价值的串行退化生产系统维护更新策略[J]. 上海交通大学学报, 2020, 54(5): 465-472.
[1] DU Yu, LI Yuqing, ZHANG Xiufang, et al. Preventive maintenance and replacement policy for series deteriorating production system considering generalized time value[J]. Journal of Shanghai Jiao Tong University, 2020, 54(5): 465-472.
[2] 郝虹斐, 郭伟, 桂林, 等. 非完美维修情境下的预防性维修多目标决策模型[J]. 上海交通大学学报, 2018, 52(5): 518-524.
[2] HAO Hongfei, GUO Wei, GUI Lin, et al. A multi-objective preventive maintenance decision-making model for imperfect repair process[J]. Journal of Shanghai Jiao Tong University, 2018, 52(5): 518-524.
[3] WANG H Z. A survey of maintenance policies of deteriorating systems[J]. European Journal of Operational Research, 2002, 139(3): 469-489.
[4] NAKAGAWA T. Periodic and sequential preventive maintenance policies[J]. Journal of Applied Probability, 1986, 23(2): 536-542.
[5] ZHU X Y, BEI X Q, CHATWATTANASIRI N, et al. Optimal system design and sequential preventive maintenance under uncertain aperiodic-changing stresses[J]. IEEE Transactions on Reliability, 2018, 67(3): 907-919.
[6] ZHOU Y, KOU G, XIAO H, et al. Sequential imperfect preventive maintenance model with failure intensity reduction with an application to urban buses[J]. Reliability Engineering & System Safety, 2020, 198: 106871.
[7] DUAN C Q, DENG C, WANG B R. Multi-phase sequential preventive maintenance scheduling for deteriorating repairable systems[J]. Journal of Intelligent Manufacturing, 2019, 30(4): 1779-1793.
[8] 苏春, 胡照勇, 郑玉巧. 基于可用度约束的风力机单部件顺序维修优化[J]. 东南大学学报(自然科学版), 2019, 49(1): 110-115.
[8] SU Chun, HU Zhaoyong, ZHENG Yuqiao. Single part sequential maintenance optimization for wind turbines based on availability constraint[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(1): 110-115.
[9] SUN Q Z, YE Z S, PENG W W. Scheduling preventive maintenance considering the saturation effect[J]. IEEE Transactions on Reliability, 2019, 68(2): 741-752.
[10] 张根保, 张定飞, 冉琰, 等. 基于Gamma和混合Copula的元动作单元性能可靠性分析[J]. 湖南大学学报(自然科学版), 2021, 48(4): 113-125.
[10] ZHANG Genbao, ZHANG Dingfei, RAN Yan, et al. Performance reliability analysis of meta-action unit based on gamma process and hybrid copula function[J]. Journal of Hunan University (Natural Sciences), 2021, 48(4): 113-125.
[11] LI Y L, ZHANG X G, RAN Y, et al. Reliability and modal analysis of key meta-action unit for CNC machine tool[J]. IEEE Access, 2019, 7: 23640-23655.
[12] YU H, ZHANG G B, RAN Y, et al. A reliability allocation method for mechanical product based on meta-action[J]. IEEE Transactions on Reliability, 2020, 69(1): 373-381.
[13] 张根保, 冉琰, 庾辉, 等. 机械产品可靠性研究的新进展: 元动作可靠性理论[J]. 制造技术与机床, 2022(1): 53-59.
[13] ZHANG Genbao, RAN Yan, YU Hui, et al. New progress in reliability research of mechanical products-reliability theory of meta-action[J]. Manufacturing Technology & Machine Tool, 2022(1): 53-59.
[14] ZHANG W, ZHANG G B, RAN Y, et al. The full-state reliability model and evaluation technology of mechatronic product based on meta-action unit[J]. Advances in Mechanical Engineering, 2018, 10(5): 1-11.
[15] YU H, ZHANG G B, RAN Y. A more reasonable definition of failure mode for mechanical systems using meta-action[J]. IEEE Access, 2018, 7: 4898-4904.
[16] ZHANG X G, ZHANG G B, LI Y L, et al. A novel fault diagnosis approach of a mechanical system based on meta-action unit[J]. Advances in Mechanical Engineering, 2019, 11(2): 1-12.
[17] WANG G J, ZHANG Y L, YAM R C M. Preventive maintenance models based on the generalized geometric process[J]. IEEE Transactions on Reliability, 2017, 66(4): 1380-1388.
[18] WANG G J, YAM R C M. Generalized geometric process and its application in maintenance problems[J]. Applied Mathematical Modelling, 2017, 49: 554-567.
文章导航

/