机械与动力工程

基于对不平衡数据集进行二次迁移学习的滚动轴承剥落类故障诊断方法

展开
  • 兰州理工大学 机电工程学院, 兰州 730050
郭俊锋(1978-),教授,主要从事现代测试与故障诊断技术研究.

收稿日期: 2022-01-20

  修回日期: 2022-03-02

  录用日期: 2022-03-14

  网络出版日期: 2023-12-01

基金资助

国家自然科学基金资助项目(51465034)

Fault Diagnosis of Rolling Bearing with Roller Spalling Based on Two-Step Transfer Learning on Unbalanced Dataset

Expand
  • School of Mechanical and Electronic Engineering, Lanzhou University of Technology, Lanzhou 730050, China

Received date: 2022-01-20

  Revised date: 2022-03-02

  Accepted date: 2022-03-14

  Online published: 2023-12-01

摘要

滚动轴承在运行过程中正常工作状态时间长,故障时间很短,导致数据集不平衡,从而极大地影响深度学习模型故障诊断的准确率.针对该问题,提出一种基于二次迁移学习的滚动轴承不平衡数据集故障诊断方法.首先使用源域和目标域中的少量数据通过条件梯度惩罚生成对抗网络(CWGAN-GP)生成过渡数据集,然后将搭建好的卷积神经网络模型在源域数据集、过渡数据集和目标域数据集之间进行两次迁移,最后使用目标域的少量数据对迁移后的模型进行微调,得到最终的故障诊断模型.实验结果表明,该方法对不同工况下数据集不平衡的滚动轴承剥落类故障有较好的诊断识别效果.

本文引用格式

郭俊锋, 王淼生, 王智明 . 基于对不平衡数据集进行二次迁移学习的滚动轴承剥落类故障诊断方法[J]. 上海交通大学学报, 2023 , 57(11) : 1512 -1521 . DOI: 10.16183/j.cnki.jsjtu.2022.008

Abstract

Under operating conditions, bearings have a substantial service life with short failure time periods, which leads to unbalanced dataset and greatly affects the accuracy of deep learning model fault diagnosis. To address this problem, a fault diagnosis method of rolling bearing unbalanced dataset based on two-step transfer learning is proposed in this paper. First, a small amount of data in the source and target domains is used to generate the transition dataset by conditional gradient penalized generative adversarial network (CWGAN-GP). Then, the constructed convolutional neural network model is migrated twice between the source domain dataset, the transition dataset, and the target domain dataset. Finally, a small amount of data from the target domain is used to fine-tune the transferred model to obtain the final fault diagnosis model. The experimental results show that the method has a good diagnostic recognition effect on rolling bearing spalling class faults with unbalanced dataset under different working conditions.

参考文献

[1] 张根保, 李浩, 冉琰, 等. 一种用于轴承故障诊断的迁移学习模型[J]. 吉林大学学报(工学版), 2020, 50(5): 1617-1626.
[1] ZHANG Genbao, LI Hao, RAN Yan, et al. A transfer learning model for bearing fault diagnosis[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(5): 1617-1626.
[2] 周生通, 朱经纬, 周新建, 等. 组合载荷作用下动车牵引电机转子系统弯扭耦合振动特性[J]. 交通运输工程学报, 2020, 20(1): 159-170.
[2] ZHOU Shengtong, ZHU Jingwei, ZHOU Xinjian, et al. Bending-torsional coupling vibration characteristics of EMU traction motor rotor system under combined loads[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 159-170.
[3] 韩毅. 地铁车辆滚动轴承振动信号的时域分析[J]. 城市轨道交通研究, 2021, 24 (Sup.1): 57-62.
[3] HAN Yi. Time domain analysis of vibration signal for metro vehicle rolling bearing[J]. Urban Mass Transit, 2021, 24 (Sup.1): 57-62.
[4] 李舜酩, 侯钰哲, 李香莲. 滚动轴承振动故障时频域分析方法综述[J]. 重庆理工大学学报(自然科学), 2021, 35(10): 85-93.
[4] LI Shunming, HOU Yuzhe, LI Xianglian. Review on time-frequency-domain analysis methods for vibration faults of rolling bearings[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(10): 85-93.
[5] 张士强. 基于深度学习的故障诊断技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
[5] ZHANG Shiqiang. Research on fault diagnosis technology based on deep learning[D]. Harbin:Harbin Institute of Technology, 2018.
[6] ZHAO R, YAN R Q, CHEN Z H, et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115: 213-237.
[7] TAMILSELVAN P, WANG P F. Failure diagnosis using deep belief learning based health state classification[J]. Reliability Engineering & System Safety, 2013, 115: 124-135.
[8] HOANG D T, KANG H J. Rolling element bearing fault diagnosis using convolutional neural network and vibration image[J]. Cognitive Systems Research, 2019, 53: 42-50.
[9] ZHAO X L, JIA M P, LIU Z. Fault diagnosis framework of rolling bearing using adaptive sparse contrative auto-encoder with optimized unsupervised extreme learning machine[J]. IEEE Access, 2019, 8: 99154-99170.
[10] ZHANG X, HUANG T, WU B, et al. Multi-model ensemble deep learning method for intelligent fault diagnosis with high-dimensional samples[J]. Frontiers of Mechanical Engineering, 2021, 16(2): 340-352.
[11] SHAO S Y, WANG P, YAN R Q. Generative adversarial networks for data augmentation in machine fault diagnosis[J]. Computers in Industry, 2019, 106: 85-93.
[12] WANG J, HE Q B. Wavelet packet envelope manifold for fault diagnosis of rolling element bearings[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(11): 2515-2526.
[13] SOUALHI A, MEDJAHER K, ZERHOUNI N. Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(1): 52-62.
[14] CHEN J L, LI Z P, PAN J, et al. Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review[J]. Mechanical Systems and Signal Processing, 2016, 70/71: 1-35.
[15] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[16] ZHENG M, LI T, ZHU R, et al. Conditional Wasserstein generative adversarial network-gradient penalty-based approach to alleviating imbalanced data classification[J]. Information Sciences, 2020, 512: 1009-1023.
[17] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein gan[EB/OL]. (2017-12-06)[2022-01-20]. https://arxiv.org/abs/1701.07875
[18] ADDAGARLA S K. Real time multi-scale facial mask detection and classification using deep transfer learning techniques[J]. International Journal of Advanced Trends in Computer Science and Engineering, 2020, 9(4): 4402-4408.
[19] PENG C, LI L L, CHEN Q, et al. A fault diagnosis method for rolling bearings based on parameter transfer learning under imbalance data sets[J]. Energies, 2021, 14(4): 944.
[20] TAN B, ZHANG Y, PAN S J, et al. Distant domain transfer learning[C]// Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, California, USA: ACM, 2017: 2604-2610.
文章导航

/