收稿日期: 2023-04-28
修回日期: 2023-07-19
录用日期: 2023-07-24
网络出版日期: 2023-11-08
基金资助
台达电力电子科教发展计划基金(DREG2022009);上海交通大学“新进青年教师启动计划”(22X010500326)
Active Disturbance Rejection Control of Current of Direct Drive Wind Turbine in Power Grid Fault
Received date: 2023-04-28
Revised date: 2023-07-19
Accepted date: 2023-07-24
Online published: 2023-11-08
电网并网导则要求风电机组在电网故障时具备快速无功支撑能力,采用传统比例积分控制器控制的直驱风力机在应对电网阻抗变化和模型严重扰动时存在暂态响应速度慢、适应性差的问题.针对该问题,提出一种改进的线性自抗扰控制器与最小方差滤波器相结合的无功支撑控制策略.采用最小方差滤波器快速精准检测含背景谐波的故障电网电压幅值,可有效减小故障检测延时;利用线性自抗扰控制器有效提升机组暂态无功响应速度及其在电网阻抗扰动下的控制适应性和鲁棒性.搭建基于PSCAD/EMTDC软件的直驱风力机仿真模型,考虑弱电网和电网含背景谐波两种场景,对提出控制策略的暂态支撑有效性进行了仿真验证.
王晗 , 王富文 , 周党生 , 施刚 , 张建文 , 蔡旭 . 电网故障下永磁直驱风电机组并网电流的自抗扰控制[J]. 上海交通大学学报, 2024 , 58(12) : 1968 -1976 . DOI: 10.16183/j.cnki.jsjtu.2023.159
The grid connection guidelines require wind turbines to have capability to quickly support reactive power in the events of grid faults. However, traditional proportional-integral controllers have the problems of slow transient response and poor adaptability dealing with changes in grid impedance and serious model disturbances. In order to solve this problem, this paper proposes an improved reactive power support control strategy which combines linear active disturbance rejection control(ADRC) with least error squares(LES) filters. The LES filter is used to quickly and accurately detect the amplitude of the fault grid voltage with background harmonics, which can effectively reduce the fault detection delay. The ADRC controller is used to effectively improve the transient reactive power response speed and the control adaptability and robustness of the wind turbines under grid impedance disturbance. The simulation model of direct drive wind turbine based on PSCAD/EMTDC is built considering two scenarios, weak power grid and power grid with background harmonics. The effectiveness of the proposed control strategy is verified by simulation.
[1] | 黄强, 郭怿, 江建华, 等. “双碳” 目标下中国清洁电力发展路径[J]. 上海交通大学学报, 2021, 55(12): 1499-1509. |
HUANG Qiang, GUO Yi, JIANG Jianhua, et al. Development pathway of China’s clean electricity under carbon peaking and carbon neutrality goals[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1499-1509. | |
[2] | 中华人民共和国国家能源局. 国家能源局2023年一季度新闻发布会文字实录[EB/OL]. (2023-02-13)[2023-04-27]. http://www.nea.gov.cn/2023-02/13/c_1310697149.htm. |
National Energy Administration of the People’s Republic of China. Transcript of the national energy administration’s 2023 first quarter press conference[EB/OL]. (2023-02-13)[2023-04-27]. http://www.nea.gov.cn/2023-02/13/c_1310697149.htm. | |
[3] | 薛安成, 付潇宇, 乔登科, 等. 风电参与的电力系统次同步振荡机理研究综述和展望[J]. 电力自动化设备, 2020, 40(9): 118-128. |
XUE Ancheng, FU Xiaoyu, QIAO Dengke, et al. Review and prospect of research on sub-synchronous oscillation mechanism for power system with wind power participation[J]. Electric Power Automation Equipment, 2020, 40(9): 118-128. | |
[4] | 徐海亮, 聂飞, 王诗楠. 弱电网下永磁风机网侧变流器频率耦合效应关键作用因子评估及控制对策[J]. 电网技术, 2021, 45(5): 1687-1697. |
XU Hailiang, NIE Fei, WANG Shinan. Evaluation of key factors and control strategies for frequency coupling effect of grid side converter of permanent magnet fan in weak current grid[J]. Power grid technology, 2021, 45 (5): 1687-1697. | |
[5] | 葛俊, 刘辉, 江浩, 等. 虚拟同步发电机并网运行适应性分析及探讨[J]. 电力系统自动化, 2018, 42(9): 26-35. |
GE Jun, LIU Hui, JIANG Hao, et al. Analysis and investigation on grid-connected operation adaptability of virtual synchronous generators[J]. Automation of Electric Power Systems, 2018, 42(9): 26-35. | |
[6] | KIM K H, JEUNG Y C, LEE D C, et al. LVRT scheme of PMSG wind power systems based on feedback linearization[J]. IEEE Transactions on Power Electronics, 2012, 27(5): 2376-2384. |
[7] | CASTILLA M, MIRET J, CAMACHO A, et al. Voltage support control strategies for static synchronous compensators under unbalanced voltage sags[J]. IEEE Transactions on Industrial Electronics, 2014, 61(2): 808-820. |
[8] | DEMIROK E, GONZáLEZ P C, FREDERIKSEN K H B, et al. Local reactive power control methods for overvoltage prevention of distributed solar inverters in low-voltage grids[J]. IEEE Journal of Photovoltaics, 2011, 1(2): 174-182. |
[9] | 蔡旭, 李睿, 刘畅, 等. 高压直挂储能功率变换技术与世界首例应用[J]. 中国电机工程学报, 2020, 40(1): 200-211. |
CAI Xu, LI Rui, LIU Chang, et al. Transformerless high-voltage power conversion system for battery energy storage system and the first demonstration application in world[J]. Proceedings of the CSEE, 2020, 40(1): 200-211. | |
[10] | 齐金玲, 李卫星, 晁璞璞, 等. 直驱风机故障穿越全过程的通用电磁暂态建模方法[J]. 中国电机工程学报, 2022, 42(4): 1428-1443. |
QI Jinling, LI Weixing, CHAO Pupu, et al. Generic electromagnetic transient modeling method for complete fault ride-through processes of direct-driven wind turbine generators[J]. Proceedings of the CSEE, 2022, 42(4): 1428-1443. | |
[11] | 蔡旭, 秦垚, 王晗, 等. 风电机组的自同步电压源控制研究综述[J]. 高电压技术, 2023, 49(6): 2478-2490. |
CAI Xu, QIN Yao, WANG Han, et al. Review of self-synchronous voltage source control for wind turbine generator[J]. High Voltage Engineering, 2023, 49(6): 2478-2490. | |
[12] | 秦垚, 王晗, 杨志千, 等. 全功率变换风电机组的电压源控制(二):电网故障穿越控制与保护[J]. 中国电机工程学报, 2023, 43(2): 530-543. |
QIN Yao, WANG Han, YANG Zhiqian, et al. Voltage source control of wind turbine generators with full-scale converters(part II): Control and protection of grid fault ride-through[J]. Proceedings of the CSEE, 2023, 43(2): 530-543. | |
[13] | 韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008. |
HAN Jingqing. Active disturbance rejection control technique—The technique for estimating and compensating the uncertainties[M]. Beijing: National Defense Industry Press, 2008. | |
[14] | DING C, CHEN Y W, NIE T P. LVRT control strategy for asymmetric faults of DFIG based on improved MPCC method[J]. IEEE Access, 2021, 9: 165207-165218. |
[15] | ZHOU R, FU C F, TAN W. Implementation of linear controllers via active disturbance rejection control structure[J]. IEEE Transactions on Industrial Electronics, 2021, 68(7): 6217-6226. |
[16] | ZHOU R, TAN W. Analysis and tuning of general linear active disturbance rejection controllers[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5497-5507. |
[17] | 曾俊杰, 苏鑫, 李正, 等. 三相电压型PWM整流器的自抗扰控制研究[J]. 计算机测量与控制, 2023, 31(1): 93-99. |
ZENG Junjie, SU Xin, LI Zheng, et al. Research on active disturbance rejection control of three-phase voltage type PWM rectifier[J]. Computer Measurement & Control, 2023, 31(1): 93-99. | |
[18] | 李学东, 颜景斌, 高崇禧, 等. 三相电流型整流器的线性自抗扰控制[J]. 哈尔滨理工大学学报, 2023, 28(1): 73-79. |
LI Xuedong, YAN Jingbin, GAO Chongxi, et al. Linear active disturbance rejection control of three-phase current source rectifier[J]. Journal of Harbin University of Science & Technology, 2023, 28(1): 73-79. | |
[19] | 杨霞, 李琛, 杨路勇, 等. 风电并网逆变器的双闭环自抗扰控制策略研究[J]. 山东电力技术, 2022, 49(11): 70-77. |
YANG Xia, LI Chen, YANG Luyong, et al. Research on double closed-loop active disturbance rejection control strategy of wind power grid-connected inverter[J]. Shandong Electric Power, 2022, 49(11): 70-77. | |
[20] | HE H C, SI T T, SUN L, et al. Linear active disturbance rejection control for three-phase voltage-source PWM rectifier[J]. IEEE Access, 2020, 8: 45050-45060. |
[21] | ZHOU X S, ZHONG W B, MA Y J, et al. Control strategy research of D-STATCOM using active disturbance rejection control based on total disturbance error compensation[J]. IEEE Access, 2021, 9: 50138-50150. |
[22] | XU H L, NIE F, WANG Z X, et al. Impedance modeling and stability factor assessment of grid-connected converters based on linear active disturbance rejection control[J]. Journal of Modern Power Systems & Clean Energy, 2021, 9(6): 1327-1338. |
[23] | ZHANG B, ZHOU X S, MA Y J. Improved linear active disturbance rejection control of photovoltaic grid connected inverter based on filter function[J]. IEEE Access, 2021, 9: 141725-141737. |
[24] | GAO F, CHEN W B, FANG M X. Robust disturbance rejection in uncertain singular systems using equivalent-input-disturbance method based on output feedback control[J]. IEEE Access, 2020, 8: 115932-115940. |
[25] | 袁东, 马晓军, 曾庆含, 等. 二阶系统线性自抗扰控制器频带特性与参数配置研究[J]. 控制理论与应用, 2013, 30(12): 1630-1640. |
YUAN Dong, MA Xiaojun, ZENG Qinghan, et al. Research on frequency-band characteristics and parameters configuration of linear active disturbance rejection control for second-order systems[J]. Control Theory & Applications, 2013, 30(12): 1630-1640. | |
[26] | 陈国栋, 朱淼, 蔡旭, 等. 一种软件锁相环和电压跌落检测新算法[J]. 中国电机工程学报, 2014, 34(25): 4385-4394. |
CHEN Guodong, ZHU Miao, CAI Xu, et al. A new algorithm for software phase locked-loop and voltage sag detection[J]. Proceedings of the CSEE, 2014, 34(25): 4385-4394. |
/
〈 |
|
〉 |