基于Skempton公式的沉船打捞过程安全性分析
收稿日期: 2023-05-14
修回日期: 2023-06-14
录用日期: 2023-07-18
网络出版日期: 2023-11-10
基金资助
国家自然科学基金(51179103)
Safety Analysis of Wreck Salvage Process Based on Skempton Function
Received date: 2023-05-14
Revised date: 2023-06-14
Accepted date: 2023-07-18
Online published: 2023-11-10
为评估整体打捞作业安全性,以“长江口二号”打捞系统为研究对象,基于三维势流理论及Skempton公式建立了沉船整体打捞过程耦合动力响应特性数值模型.该模型经实测验证,被用于沉船打捞全过程安全性分析.研究结果表明:整体打捞过程需特别关注离底和部分出水两个阶段打捞系统的运动响应以及提升缆、系泊缆张力的变化.随着波高和谱峰周期的增加,打捞系统运动响应和缆绳张力极值增大.浪向对打捞系统六自由度运动的影响较为复杂,斜浪作用下提升缆的张力极值明显增加.根据缆绳安全系数的计算,制定打捞方案时,要选择适当的提升速度,避免在20°~70° 的浪向下进行打捞作业.
关键词: 沉船打捞; Skempton公式; 耦合分析; 安全性分析
潘洁, 王磊, 王一听, 周东荣, 朱小东 . 基于Skempton公式的沉船打捞过程安全性分析[J]. 上海交通大学学报, 2023 , 57(S1) : 94 -107 . DOI: 10.16183/j.cnki.jsjtu.2023.S1.18
In order to evaluate the safety of salvage operation, a numerical model of the coupling dynamic response characteristics of the “Yangtze River Estuary II” salvage system is established based on the three-dimensional potential flow theory and the Skempton formula. The model has been verified by actual measurement and is used in the safety analysis of the whole salvage process. The research results show that special attention needs to be paid to the motion response of the salvage system and the tension changes of the lifting and mooring lines in the two stages of bottom-off and partial water-out in the overall salvage process. With the increase of wave height and spectral peak period, the motion response of the salvage system and the extreme value of cable tension increase. The influence of wave direction on the six-degree-of-freedom movement of the system is more complicated, and the extreme value of the tension of the lifting cable increases significantly under the action of oblique waves. According to the calculation of the safety factor of the cable, when formulating a salvage plan, an appropriate lifting speed should be selected, and at the same time, salvage operations should be avoided in waves of 20°—70°.
Key words: wreck salvage; Skempton formula; coupling analysis; safety analysis
[1] | HENKEL L, NEVINS H, MARTIN M, et al. Chronic oiling of marine birds in California by natural petroleum seeps, shipwrecks, and other sources[J]. Marine Pollution Bulletin, 2014, 79(1/2): 155-163. |
[2] | 陈浩政. 基于TOPSIS的沉船打捞方案评估优化方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2020. |
[2] | CHEN Haozheng. Research on optimization on method of wreck salvaging scheme evaluation based on TOPSIS[D]. Harbin: Harbin Engineering University, 2020. |
[3] | 王伟平, 杨濛, 卞永明, 等. 沉船打捞带缓冲补偿的液压同步提升系统研究[J]. 中国工程机械学报, 2017, 15(5): 400-405. |
[3] | WANG Weiping, YANG Meng, BIAN Yongming, et al. Study of hydraulic stnchronous lifting system for shipwreck salvage with cushion compensation[J]. Chinese Journal of Construction Machinery, 2017, 15(5): 400-405. |
[4] | 刘彦, 王志东, 凌宏杰. 大吨位沉船打捞多体系统耦合水动力特性研究[J]. 船舶工程, 2020, 42(10): 35-40. |
[4] | LIU Yan, WANG Zhidong, LING Hongjie. Study of multi-body coupled hydrodynamic characteristics for large tonnage shipwreck salvage[J]. Ship Engineering, 2020, 42(10): 35-40. |
[5] | 杨天笑. 双驳抬撬沉船打捞过程提升力计算与仿真研究[D]. 大连: 大连海事大学, 2018. |
[5] | YANG Tianxiao. Study on the lifting forces computation and simulation in the process of wreck salvage with double barges[D]. Dalian: Dalian Maritime University, 2018. |
[6] | 孟轲, 董海防. 沉船打捞作业时域内吊缆张力计算[J]. 船海工程, 2018, 47(4): 165-167. |
[6] | MENG Ke, DONG Haifang. Calculation of time-domain cable tension in salvage operation[J]. Ship & Ocean Engineering, 2018, 47(4): 165-167. |
[7] | 杨芷蘅, 刘雨, 王振宇, 等. 沉船起吊过程中海土吸附力对吊力影响的数值分析[J]. 船海工程, 2022, 51(6): 57-61. |
[7] | YANG Zhiheng, LIU Yu, WANG Zhenyu, et al. Numerical analysis of the influence of adsorption force in the lifting process of wrecked ship[J]. Ship & Ocean Engineering, 2022, 51(6): 57-61. |
[8] | XIN S, WANG Y, WANG L, et al. Dynamic analysis of the mooring system of a salvage barge: A coupled time-domain method considering seabed resistance during the off-bottom stage[J]. Ocean Engineering, 2023, 275: 114078. |
[9] | LEE C, YOON H, KIM D, et al. Lifting forces required to salvage a sunken vessel and caisson and their response to bottom friction, buoyancy release, surface tension, water capture and water release[J]. Ocean Engineering, 2016, 125: 82-89. |
[10] | 中华人民共和国国家标准. 电焊锚链:GB/T 549—2017[S]. 上海: 上海规范研究所, 2017. |
[10] | National Standard of the People’s Republic of China. Electric welding anchor chain: GB/T 549—2017[S]. Shanghai: Shanghai Institute of Standardization, 2017. |
[11] | 金广泉, 金涛, 陈晓红, 等. 底质对潜坐结构吸附力的试验研究[J]. 海军工程学院学报, 1998(3): 51-55. |
[11] | JIN Guangquan, JIN Tao, CHEN Xiaohong, et al. Experimental research on breakout force of embedded objects from sediments[J]. Journal of Naval University of Engineering, 1998(3): 51-55. |
[12] | 隋吉林. 潜坐结构物的吸附力研究[D]. 大连: 大连理工大学, 2009. |
[12] | SUI Jilin. Study on adsorption power of submersible structure from sediment[D]. Dalian: Dalian University of Technology, 2009. |
/
〈 |
|
〉 |