竖向小曲率半径曲线顶管掘进管节-土体相互作用

展开
  • 1.同济大学 地下建筑与工程系,上海 200092
    2.新疆大学 建筑工程学院,乌鲁木齐 830047
    3.上海隧道工程有限公司,上海 200032
    4.交通运输部上海打捞局,上海 200090
李 登(1998-),硕士生,从事隧道及地下工程方面的研究.

收稿日期: 2022-07-07

  修回日期: 2022-07-25

  录用日期: 2022-08-22

  网络出版日期: 2023-11-10

基金资助

上海市科委社发领域重大项目(21DZ1201103);国家自然科学基金(52278407)

Pipe-Ground Interaction During Curved Pipe Jacking Process with a Small Radius of Vertical Curvature

Expand
  • 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
    2. College of Civil Engineering and Architecture, Xinjiang University, Urumuchi 830047, China
    3. Shanghai Tunnel Engineering Co., Ltd., Shanghai 200032, China
    4. Shanghai Salvage Ministry of Transport, Shanghai 200090, China

Received date: 2022-07-07

  Revised date: 2022-07-25

  Accepted date: 2022-08-22

  Online published: 2023-11-10

摘要

“长江口二号”古沉船采用国际首创的曲线顶管底幕法进行打捞,其顶管机的机械设计及管节的结构设计需明确顶管管节与地层的相互作用并建立合理的顶推力计算模型.在厘清顶管掘进过程中管节-地层相互作用因素的基础上,基于极限平衡理论,推导竖向小曲率半径曲线顶管掘进顶推力计算方法.采用耦合欧拉-拉格朗日(CEL)方法对单根管节的动态掘进过程进行数值模拟分析,获得小曲率半径矩形曲线顶管掘进过程中地层应力和地表变形的动态变化规律,并通过与模型试验、现场施工监测数据和理论计算结果的对比分析,明确竖向小曲率半径曲线顶管动态掘进过程中顶推力的动态变化特征及控制因素.研究成果可为类似“长江口二号”打捞工程的实施提供重要的理论依据和技术指导.

本文引用格式

李登, 庄欠伟, 黄昕, 周东荣, 朱小东, 张弛, 魏良孟 . 竖向小曲率半径曲线顶管掘进管节-土体相互作用[J]. 上海交通大学学报, 2023 , 57(S1) : 69 -79 . DOI: 10.16183/j.cnki.jsjtu.2023.S1.02

Abstract

The salvage of “Yangtze River Estuary II” ancient wreck adopted the world’s first curved pipe based method. The mechanical design of the pipe jacking machine and the structure design of curved pipe relied on the understanding of the pipe-ground interaction mechanism and establishment of a reasonable model for calculating the driving force. Based on the understanding of the major factors contributing to the pipe-ground interaction, a theoretical model for calculating the driving force of curved pipe jacking machine with a small radius of vertical curvature was derived through equilibrium analysis. The dynamic jacking process of a single pipe was simulated using the coupled Eulerian Lagrangian (CEL) method, from which the evolution processes of ground stress and ground surface settlement during the curved pipe jacking process with a small radius of vertical curvature were obtained. The simulation results were compared with model test data, on-site monitoring data, and theoretical calculation results, whereby the characteristics of driven force evolution and its controlling factors were obtained. The research outcome can provide theoretical basis and technical support for future wreck salvage project similar to “Yangtze River Estuary II”.

参考文献

[1] 沈桂平, 曹文宏, 杨俊龙, 等. 管幕法综述[J]. 岩土工程界, 2006(2): 27-29.
[1] SHEN Guiping, CAO Wenhong, YANG Junlong, et al. Review of curtain control[J]. Geotechnical Engineering Community, 2006(2): 27-29.
[2] 马保松, 张雅春. 曲线顶管技术及顶进力分析计算[J]. 岩土工程技术, 2006, 20(5): 229-232.
[2] MA Baosong, ZHANG Yachun. Curved pipe jacking technology and the calculation of jacking loads for curved section[J]. Geotechnical Engineering Technique, 2006, 20(5): 229-232.
[3] SOFIANOS A I, LOUKAS P, CHANTZAKOS C. Pipe jacking a sewer under Athens[J]. Tunnelling and Underground Space Technology, 2004, 19(2): 193-203.
[4] 张鹏. 拱北隧道超大型曲线顶管管幕施工关键技术及理论研究[D]. 武汉: 中国地质大学, 2018.
[4] ZHANG Peng. Research on key construction techniques and theory of super large curved pipe jacking roof in Gongbei tunnel[D]. Wuhan: China University of Geosciences, 2018.
[5] 雷晗, 陈锦剑, 王建华, 等. 大直径砼顶管的管道受力特性分析[J]. 上海交通大学学报, 2011, 45(10): 1493-1497.
[5] LEI Han, CHEN Jinjian, WANG Jianhua, et al. Analysis of mechanical characteristics of large diameter concrete pipe jacking pipeline[J]. Journal of Shanghai Jiao Tong University, 2011, 45(10): 1493-1497.
[6] 刘翔, 白海梅, 陈晓晨, 等. 软土中大直径顶管管道受力特性测试[J]. 上海交通大学学报, 2014, 48(11): 1503-1509.
[6] LIU Xiang, BAI Haimei, CHEN Xiaochen, et al. Field test of mechanical properties of large diameter concrete jacking pipe in soft soil[J]. Journal of Shanghai Jiao Tong University, 2014, 48(11): 1503-1509.
[7] 由广明, 朱合华, 刘学增, 等. 曲线顶管施工环境影响的三维有限元分析[J]. 地下空间与工程学报, 2007, 3(2): 218-223.
[7] YOU Guangming, ZHU Hehua, LIU Xuezeng, et al. 3D finite element analysis of influence of curved pipe-jacking construction on environments[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(2): 218-223.
[8] 邴风举, 王新, 习宁, 等. 顶管施工三维数值模拟及土质适用性研究[J]. 地下空间与工程学报, 2011, 7(6): 1209-1215.
[8] BING Fengju, WANG Xin, XI Ning, et al. 3D numerical simulation of pipe jacking and its soil applicability study[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(6): 1209-1215.
[9] 王贺敏, 肖尊群, 汤东桑, 等. 郑州地铁4号线商都路站1号地下通道矩形顶管施工过程数值模拟与现场监测[J]. 隧道建设(中英文), 2019(S2): 110-119.
[9] WANG Hemin, XIAO Zunqun, TANG Dongsang, et al. Numerical simulation and field monitoring of construction process of rectangular pipe jacking in No. 1 underground passage of Shangdu Road station on Zhengzhou metro line 4[J]. Tunnel Construction, 2019(S2): 110-119.
[10] 黄吉龙. 大口径玻璃钢夹砂顶管室内试验与数值分析[D]. 上海: 上海交通大学, 2007.
[10] HUANG Jilong. Experimentation and numerical analysis of large diameter glass reinforced plastic mortar pipe-jacking[D]. Shanghai: Shanghai Jiao Tong University, 2007.
[11] 张斌梁, 王翔宇, 高海东, 等. 曲线顶管顶进管节应力特征试验研究[J]. 铁道标准设计, 2016, 60(5): 95-98.
[11] ZHANG Binliang, WANG Xiangyu, GAO Haidong, et al. Experimental study on pipe stress characteristics of curved pipe-jacking[J]. Railway Standard Design, 2016, 60(5): 95-98.
[12] 史培新, 俞蔡城, 潘建立, 等. 拱北隧道大直径曲线管幕顶管顶力研究[J]. 岩石力学与工程学报, 2017, 36(9): 2251-2259.
[12] SHI Peixin, YU Caicheng, PAN Jianli, et al. Analysis on the jacking load of the curved pipe roof supporting the large diameter Gongbei tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(9): 2251-2259.
[13] 丁传松. 直线及曲线顶管施工中的顶推力研究[D]. 南京: 南京工业大学, 2004.
[13] DING Chuansong. Study on jacking force induced by linea and curved pipe jacking construction[D]. Nanjing: Nanjing University of Technology, 2004.
[14] 陈忠杰. 曲线管推进之物理模型实验与推进力之分析研究[D]. 台北: 中兴大学, 2008.
[14] CHEN Zhongjie. Physical model experiment and propulsive force analysis of curved tube propulsion[D] Taibei: Chung Hsing University, 2008.
[15] SHOU K, YEN J, LIU M. On the frictional property of lubricants and its impact on jacking force and soil-pipe interaction of pipe-jacking[J]. Tunnelling and Underground Space Technology, 2010, 25(4): 469-477.
[16] 李登, 庄欠伟, 黄昕, 等. 矩形曲线顶管底幕法顶管顶推力计算方法研究[J]. 现代隧道技术, 2022, 59(S1): 461-470.
[16] LI Deng, ZHUANG Qianwei, HUANG Xin, et al. Research on the calculation model of driving force for pipe jacking of rectangular curved pipe basing method[J]. Modern Tunnelling Technology, 2022, 59(S1): 461-470.
[17] NOH W F. A time-dependent, two space dimensional, coupled Eulerian-Lagrange code[M]\\ALDER B, FERNBACH S, RITENBERG M, et al. Methods in computational physics. New York: Academic Press, 1963: 12-23.
[18] 闫澍旺, 霍知亮. 岩土工程下沉贯入数值模拟方法研究进展[J]. 力学与实践, 2016, 38(3): 237-249.
[18] YAN Shuwang, HUO Zhiliang. Advance in numerical simulation methods for penetration in geotechnical engineering[J]. Mechanics in Engineering, 2016, 38(3): 237-249.
[19] QIU G, HENKE S, GRABE J. Application of a Coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations[J]. Computers and Geotechnics, 2011, 38(1): 30-39.
[20] THO K K, LEUNG C F, CHOW Y K, et al. Eulerian finite-element technique for analysis of jack-up spudcan penetration[J]. International Journal of Geomechanics, 2012, 12(1): 64-73.
[21] 翟一欣. 曲线顶管底幕法古沉船整体打捞缩尺模型试验[J]. 科学技术与工程, 2022, 22(31): 13905-13913.
[21] ZHAI Yixin. Reduced-scale model tests on the curved pipe basing wreck salvage method[J]. Science Technology and Engineering, 2022, 22(31): 13905-13913.
[22] 潘同燕. 大口径急曲线顶管施工力学分析与监测技术研究[D]. 上海: 同济大学, 2000.
[22] PAN Tongyan. Study on construction mechanics analysis and monitoring technology of large diameter sharp curve pipe jacking[D]. Shanghai: Tongji University, 2000.
[23] 魏丽敏, 李双龙, 杜猛, 等. 基于CEL法的静压管桩挤土效应数值分析[J]. 华南理工大学学报(自然科学版), 2021, 49(4): 28-38.
[23] WEI Limin, LI Shuanglong, DU Meng, et al. Numerical analysis on squeezing effect of jacked pipe pile based on CEL method[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(4): 28-38.
[24] 冯凌云. 深海管道—软土大变形相互作用数值分析研究[D]. 杭州: 浙江大学, 2019.
[24] FENG Lingyun. Numerical study on large deformation pipe-soil interaction for deep-water pipelines in soft clay[D]. Hangzhou: Zhejiang University, 2019.
文章导航

/