基于反向传播神经网络的海洋工程项目投标风险评价方法

展开
  • 1.上海交通大学 海洋工程国家重点实验室,上海 200240
    2.福氏船级社,上海 200072
夏 禹(1992-),硕士生,研究方向为海洋工程项目管理及船舶检验技术与方法.

收稿日期: 2023-05-14

  修回日期: 2023-06-14

  录用日期: 2023-07-18

  网络出版日期: 2023-11-10

基金资助

上海市科技创新行动计划(21DZ1201106)

Risk Assessment Method for Marine Engineering Project Bidding Based on Back Propagation Neural Network

Expand
  • 1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Foresight Ship Classification, Shanghai 200072, China

Received date: 2023-05-14

  Revised date: 2023-06-14

  Accepted date: 2023-07-18

  Online published: 2023-11-10

摘要

海洋工程行业是一个国际化的行业,其国际化的性质决定了该行业的竞争的激烈性.同时海洋工程项目需要大规模的资金投入,所以在进行该类项目投标时,公司决策人员能否对拟投标项目进行正确的风险评估后做出合理的投标决策,对公司的长期发展起到至关重要的作用.通过对海洋工程行业投标项目相关风险因素的分析和识别,使用模糊层次分析法量化定性问题,并通过反向传播(Back Propagation,BP)神经网络的高容错、高泛化能力,建立相应项目风险评价模型.经过验证,该模型评估结果与实际专家评分结果相一致,具有较高的准确性,从而为海洋工程行业的配套企业在投标决策过程中提供了一个有效且快速的风险分析工具.

本文引用格式

夏禹, 王磊 . 基于反向传播神经网络的海洋工程项目投标风险评价方法[J]. 上海交通大学学报, 2023 , 57(S1) : 46 -53 . DOI: 10.16183/j.cnki.jsjtu.2023.S1.26

Abstract

The marine engineering industry is an internationalized sector, whose internationalization determines the intensity of competition. In the bidding process, it is crucial for company decision-makers to conduct accurate risk assessments, as this plays a vital role in the long-term development of the company. A high accuracy project risk assessment model is established after analyzing and identifying relevant risk factors in such projects based on quantifying qualitative problems using the fuzzy analytic hierarchy process (FAHP) and utilizing the high fault-tolerance and generalization capabilities of the back propagation (BP) neural network. Thus, the model provides an effective and efficient risk analysis tool for supporting enterprises in the marine engineering industry in the bidding decision-making process.

参考文献

[1] 孙贤胜, 单卫国, 高振宇, 等. 重塑全球能源格局的2022[J]. 国际石油经济, 2023, 31(1): 24-30.
[1] SUN Xiansheng, SHAN Weiguo, GAO Zhenyu, et al. 2022: Reshaping the global energy landscape[J]. International Petroleum Economics, 2023, 31 (1): 24-30.
[2] 中国石油集团经济技术研究院. 2018年国内外油气行业发展报告[M]. 北京: 石油工业出版社, 2019.
[2] China Petroleum Corporation Economic and Technological Research Institute. 2018 domestic and foreign oil and gas industry development report[M]. Beijing: Petroleum Industry Press, 2019.
[3] 吴林强, 张涛, 徐晶晶, 等. 全球海洋油气勘探开发特征及趋势分析[J]. 国际石油经济, 2019, 27(3): 29-36.
[3] WU Linqiang, ZHANG Tao, XU Jingjing, et al. Characteristics and trends of global offshore oil and gas exploration and development[J]. International Petroleum Economics, 2019, 27 (3): 29-36.
[4] 黄海龙, 胡志良, 代万宝, 等. 海上风电发展现状及发展趋势[J]. 能源与节能, 2020, 177(6): 51-53.
[4] HUANG Hailong, HU Zhiliang, DAI Wanbao, et al. Development status and trend of offshore wind power[J]. Energy and Energy Conservation, 2020, 177 (6): 51-53.
[5] 谢周峰, 卫文灿, 孙超, 等. 海外EPC项目的风险管理问题研究[J]. 中国市场, 2013, 717(2): 76-78.
[5] XIE Zhoufeng, WEI Wenchan, SUN Chao, et al. Research on risk management of overseas EPC projects[J]. China Market, 2013, 717 (2): 76-78.
[6] URIL B, URIL D, GUAN B B. A time/cost/quality risk model[C]\\Proceedings of IRNOP VII Project Research Conference. Beijing, China: Publishing House of Electronic Industry, 2006: 631-640.
[7] BOERINGER D W, WERNER D H. A comparison of particle swarm optimization and genetic algorithms for a phased array synthesis problem[C]\\Antennas & Propagation Society International Symposium. Columbus, Ohio, USA: IEEE, 2003: 181-184.
[8] BELFARES L, KLIBI W, LO N, et al. Multi-objectives Tabu Search based algorithm for progressive resource allocation[J]. European Journal of Operational Research, 2007, 177(3): 1779-1799.
[9] ZHENG D, NG S T, KUMARASWAMY M M. Applying a genetic algorithm-based multiobjective approach for time-cost optimization[J]. Journal of Construction Engineering & Management, 2004, 130(2): 168-176.
[10] 陶自成, 何彦舫. 模糊综合评判风险管理技术在EPC项目投标决策中的应用[J]. 国际经济合作, 2015, 357(9): 83-86.
[10] TAO Zicheng, HE Yanfang. The application of fuzzy comprehensive evaluation risk management technology in EPC project bidding decision[J]. Journal of International Economic Cooperation, 2015, 357(9): 83-86.
[11] ZHOU X P, ZOU B H, PENG J. The causes and countermeasures of implicit cost of international EPC project[C]\\Conference Proceedings of the 7th International Symposium on Project Management (ISPM2019). Chongqing,China: Aussino Academic Publishing House, 2019: 1120-1125.
[12] LI W F, LING L. Cost control of sub-contracted projects based on EPC petrochemical engineering[J]. Journal of Physics: Conference Series, 2020, 1649(1): 012004.
[13] KIM M H, LEE E B. A forecast model for the level of engineering maturity impact on contractor’s procurement and construction costs for offshore EPC megaprojects[J]. Energies, 2019, 12(12): 2295-1-18.
[14] LI S, WANG Y J, ZENG Y. The standardization system of water conservancy project cost management under the EPC general contract model[J]. IOP Conference Series: Earth and Environmental Science, 2021, 787(1): 012118.
[15] LIU H R. Analysis on cost control and management scheme of oil and gas pipeline EPC project under transnational government credit[J]. Journal of Oil and Gas Technology, 2019, 41(4): 76-80.
[16] 王博, 顿新春, 李智勇. 基于BP神经网络的水利工程投标决策模型及应用[J]. 水电能源科学, 2013, 31(3): 131-134.
[16] WANG Bo, DUN Xinchun, LI Zhiyong. A decision model for water conservancy engineering bidding based on BP neural network and its application[J]. Water Resources and Power, 2013, 31(3): 131-134.
[17] CRISTIAN C N, SHAN Y W, PHIL L, et al. Bridge maintenance prioritization using analytic hierarchy process and fusion tables[J]. Automation in Construction, 2019, 101: 99-110.
[18] 马志远. 基于序贯概率比检验和小波神经网络的齿轮箱故障诊断方法[D]. 武汉: 武汉工程大学, 2016.
[18] MA Zhiyuan. Gearbox fault diagnosis based on sequential probability ratio test and wavelet neural network[D]. Wuhan: Wuhan University of Engineering, 2016.
文章导航

/