基于长短期记忆网络的大型漂浮式风力发电机平台运动极短期预报方法

展开
  • 1.上海勘测设计研究院有限公司,上海 200335
    2.上海交通大学 海洋工程国家重点实验室, 上海 200240
    3.上海交通大学 三亚崖州湾深海科技研究院,海南 三亚 570025
卫 慧,高级工程师,从事海上风电数字化研究.

收稿日期: 2023-07-02

  修回日期: 2023-07-23

  录用日期: 2023-08-21

  网络出版日期: 2023-11-10

基金资助

国家自然科学基金(42176210);国家自然科学基金(52201330)

Ultra-Short-Term Platform Motion Prediction Method of Large Floating Wind Turbines Based on LSTM Network

Expand
  • 1. Shanghai Investigation, Design and Research Institute Co., Ltd., Shanghai 200335, China
    2. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    3. Sanya Yazhou Bay Institute of Deepsea Science and Technology, Shanghai Jiao Tong University, Sanya 570025, Hainan, China

Received date: 2023-07-02

  Revised date: 2023-07-23

  Accepted date: 2023-08-21

  Online published: 2023-11-10

摘要

大型漂浮式风力发电机平台运动响应的超前预报是实现主动调载系统控制和智慧运维监测的关键技术.然而,漂浮式风力发电机复杂的工作环境使得仅依靠物理模型和数值仿真方法的极短期预报具有非常大的挑战.因此,提出一种创新的基于长短期记忆神经网络的漂浮式风力发电机平台运动极短期预报方法,并利用实测数据开展了浮式平台纵荡运动的验证与不确定性分析.结果表明,该极短期预报方法可以获得较好的精度,超前60 s预报工作状态下纵荡运动的均方误差最大仅约为1%.该大型漂浮式风力发电机极短期运动响应预报能够为未来漂浮式风电场的智慧运维提供扎实的技术支撑.

本文引用格式

卫慧, 陈鹏, 张芮菡, 程正顺 . 基于长短期记忆网络的大型漂浮式风力发电机平台运动极短期预报方法[J]. 上海交通大学学报, 2023 , 57(S1) : 37 -45 . DOI: 10.16183/j.cnki.jsjtu.2023.S1.27

Abstract

The motion prediction of large floating wind turbine platforms is the key technology to realize the control of active ballast systems and intelligent operation and maintenance monitoring. However, the complex environment of floating wind turbines makes ultra-short-term predictions that only rely on physical models and numerical simulation methods very challenging. Therefore, this paper proposes an innovative ultra-short-term prediction method for floating wind turbine platform motion based on the long-short-term memory (LSTM) neural network. Measured data have been used to verify the feasibility and uncertainty of this method in terms of surge motion. The results show that the ultra-short-term prediction method proposed in this paper can obtain a better accuracy. For example, the maximum mean square error of surge motion prediction in the 60 s under working condition is only about 1%. The ultra-short-term motion prediction of large floating wind turbines proposed in this paper provides solid technical support for future intelligent operation and maintenance of floating wind farms.

参考文献

[1] 温斌荣, 田新亮, 李占伟, 等. 大型漂浮式风电装备耦合动力学研究: 历史、进展与挑战[J]. 力学进展, 2022, 52(4): 731-808.
[1] WEN Binrong, TIAN Xinliang, LI Zhanwei, et al. Coupling dynamics of floating wind turbines: History, progress and challenges[J]. Advances in Mechanics, 2022, 52(4): 731-808.
[2] CHENG Z S, MADSEN H A, GAO Z, et al. A fully coupled method for numerical modeling and dynamic analysis of floating vertical axis wind turbines[J]. Renewable Energy, 2017, 107: 604-619.
[3] HEGSETH J M, BACHYNSKI E E. A semi-analytical frequency domain model for efficient design evaluation of spar floating wind turbines[J]. Marine Structures, 2019, 64: 186-210.
[4] CHENG P, HUANG Y, WAN D C. A numerical model for fully coupled aero-hydrodynamic analysis of floating offshore wind turbine[J]. Ocean Engineering, 2019, 173: 183-196.
[5] 陈曦. 海上浮式风机系统在波浪上的运动响应分析[D]. 上海: 上海交通大学, 2018.
[5] CHEN Xi. Motion response analysis of offshore floating fan system on waves[D]. Shanghai: Shanghai Jiao Tong University, 2018.
[6] 朱仁传, 缪国平, 范菊, 等. 海上浮式风力机及其动力学问题[J]. 应用数学和力学, 2013, 34(10): 1110-1118.
[6] ZHU Renchuan, MIAO Guoping, FAN Ju, et al. Offshore floating wind turbines and related dynamic problems[J]. Applied Mathematics and Mechanics, 2013, 34(10): 1110-1118.
[7] 盖晓娜, 杨建民, 田新亮. 基于小波-SVR模型的浮体极短期运动预报方法[J]. 舰船科学技术, 2018, 40(11): 66-70.
[7] GAI Xiaona, YANG Jianmin, TIAN Xinliang. A method for very short-term motion prediction of floaters based on Wavelet-SVR model[J]. Ship Science and Technology, 2018, 40(11): 66-70.
[8] ZHANG G Q, EDDY PATUWO B, HU M Y. Forecasting with artificial neural networks:[J]. International Journal of Forecasting, 1998, 14(1): 35-62.
[9] 郝立柱, 韩阳, 潘子英. 循环神经网络方法预报船舶操纵运动研究[C]\\第三十一届全国水动力学研讨会论文集(下册). 上海: 海洋出版社, 2020: 1017-1029.
[9] Hao Lizhu, Han Yang, Pan Ziying. A study on predicting ship handling movements using recurrent neural network method[C]\\Proceedings of the 31 st National Symposium on Hydrodynamics (Volume II). Shanghai, China: China Ocean Press, 2020: 1017-1029.
[10] ZENG Z G, CHEN G H. Multi-step predictions for generalized heave motion of wave compensating platform based on ELMAN neural network[C]\\2009 Third International Symposium on Intelligent Information Technology Application Workshops. Nanchang, China: IEEE, 2009: 460-463.
[11] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[12] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]\\Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2014: 1724-34.
[13] 刘飞飞. 浮式风机水动力响应与系泊系统疲劳损伤及深度学习短期运动预报研究[D]. 大连: 大连理工大学, 2022.
[13] LIU Feifei. Study on hydrodynamic response of floating fan and fatigue damage of mooring system and short-term motion prediction of deep learning[D]. Dalian: Dalian University of Technology, 2022.
[14] QIAO D S, LI P, MA G, et al. Realtime prediction of dynamic mooring lines responses with LSTM neural network model[J]. Ocean Engineering, 2021, 219: 108368.
[15] GAO D W, ZHU Y S, ZHANG J F, et al. A novel MP-LSTM method for ship trajectory prediction based on AIS data[J]. Ocean Engineering, 2021, 228: 108956.
[16] SHI W, HU L H, LIN Z B, et al. Short-term motion prediction of floating offshore wind turbine based on muti-input LSTM neural network[J]. Ocean Engineering, 2023, 280: 114558.
[17] GERS F A, SCHMIDHUBER J, CUMMINS F. Learning to forget: Continual prediction with LSTM[J]. Neural Computation, 2000, 12(10): 2451-2471.
[18] CHEN P, JIA C J, NG C, et al. Application of SADA method on full-scale measurement data for dynamic responses prediction of Hywind floating wind turbines[J]. Ocean Engineering, 2021, 239: 109814.
文章导航

/