新型电力系统与综合能源

交能融合V2G技术研究与实践综述

  • 刘栋晨 ,
  • 季昱 ,
  • 胡岳
展开
  • 1.上海电力大学 电气工程学院,上海 200090
    2.上海交通大学 电子信息与电气工程学院,上海 200240
刘栋晨(2000—),硕士生,从事电力系统状态检测、硬件在环仿真研究.
胡岳,高级工程师,博士生导师;E-mail:yuehu@sjtu.edu.cn.

收稿日期: 2023-06-30

  修回日期: 2023-10-06

  录用日期: 2023-10-19

  网络出版日期: 2023-11-06

基金资助

上海市科技创新行动计划(23N21900200)

Summary of Research and Practice on V2G Technology of Transportation and Energy Fusion

  • LIU Dongchen ,
  • JI Yu ,
  • HU Yue
Expand
  • 1. College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
    2. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2023-06-30

  Revised date: 2023-10-06

  Accepted date: 2023-10-19

  Online published: 2023-11-06

摘要

我国能源转型持续深化,电气化交通发展迅速,现有交通制式将难以满足可再生能源高消纳需求,同时电网能源供给将难以承担负荷冲击压力.实现能源与交通融合发展成为当前新命题,车网互动(V2G)技术成为研究热点.首先,分析国内外V2G应用现状.其次,针对V2G技术的重要应用领域,梳理轨道交通V2G和新能源电动汽车V2G的研究实践现状,介绍了基于个人快速交通(PRT)系统的新型V2G模式,并将3种V2G模式进行关联和对比.最后,提出在“交能融合”理念下围绕V2G构建能源互联网的展望和研究重点.

本文引用格式

刘栋晨 , 季昱 , 胡岳 . 交能融合V2G技术研究与实践综述[J]. 上海交通大学学报, 2025 , 59(1) : 1 -15 . DOI: 10.16183/j.cnki.jsjtu.2023.287

Abstract

Energy transformation in China is accelerating, with electrified transportation rapidly developing. However, the existing transportation system may struggle to meet the growing demand for renewable energy consumption, and the energy supply from the power grid could face challenges under increased load pressure. As a result, the integrated development of energy and transportation has become a pressing issue, with vehicle-to-grid (V2G) technology emerging as an area of research. This paper first examines the current status of V2G application both domestically and internationally. Then, it focuses on important V2G applications, reviewing the research and practical implementations of V2G in rail transit and new energy electric vehicles. It also introduces a novel V2G mode based on the personal rapid transit (PRT) system and compares the three V2G modes. Finally, it explores the potential of building an energy internet around V2G within the framework of “fusion of transportation and energy” and identifies future research directions.

参考文献

[1] 人民政协网. “十三五”期间,我国新建城轨线路里程超过前50年之和[EB/OL].(2022-10-15)[2023-09-05]. https://baijiahao.baidu.com/s?id=1746751663173445790&wfr=spider&for=pc.www.rmzxb.com.cn.
  People’s Political Consultative Conference Website. During the “13th Five-Year Plan” period, the mileage of China’s new urban rail lines exceeded that of the previous 50 years combined[EB/OL]. (2022-10-15) [2023-09-05]. https://baijiahao.baidu.com/s?id=1746751663173445790&wfr=spider&for=pc.www.rmzxb.com.cn.
[2] 李泽贤. 对城市轨道交通配电系统设计中的节能方法探讨[J]. 电工技术, 2019(10): 147-149.
  LI Zexian. Discussion on energy saving methods in the design of urban rail transit distribution system[J]. Electric Engineering, 2019(10): 147-149.
[3] 马静, 徐宏璐, 马瑞辰, 等. 能源交通融合下的弹性公路能源系统发展技术要点及展望[J]. 电网技术, 2023, 47(3): 885-896.
  MA Jing, XU Honglu, MA Ruichen, et al. Technical points and prospect of energy system development of elastic highway under energy and transportation integration[J]. Power System Technology, 2023, 47(3): 885-896.
[4] YIN X H, LI L, LIU Q A. A study on the vulnerability cascade propagation of integrated energy systems in the transportation industry based on the petri network[J]. Energies, 2022, 15(12): 4320.
[5] 新浪财经. 新能源高比例并网,电力系统如何应对?[EB/OL]. (2020-11-10)[2023-02-17]. https://baijiahao.baidu.com/s?id=1682943560573787259& wfr=spider&for=pc.
  Sina Finance. How does the power system cope with the high proportion of new energy connected to the grid?[EB/OL]. (2020-11-10)[2023-02-17]. https://baijiahao.baidu.com/s?id=1682943560573787259& wfr=spider&for=pc.
[6] 师瑞峰, 李少鹏. 电动汽车V2G问题研究综述[J]. 电力系统及其自动化学报, 2019, 31(6): 28-37.
  SHI Ruifeng, LI Shaopeng. Review on studies of V2G problem in electric vehicles[J]. Proceedings of the CSU-EPSA, 2019, 31(6): 28-37.
[7] MATT DE PREZ. FCA begins V2G pilot at Mirafiori plant[EB/OL]. (2020-05-21)[2023-09-28]. https://www.fleetnews.co.uk/news/manufacturer-news/2020/05/21/fca-begins-v2g-pilot-at-mirafiori-plant.
[8] üBERMASSER S, SANCHEZ R R, MADINA C, et al. Optimized and enhanced grid architecture for electric vehicles in Europe[J]. e+i Elektrotechnik und Informationstechnik, 2017, 134(1): 78-85.
[9] polisMOBILITY Magazine. Vehicle-to-grid: Polestar launches pilot project[EB/OL]. (2023-11-21) [2023-12-28]. https://www.polis-mobility.com/magazine/articles/polestar-launches-pilot-project.php.
[10] WANG M Y, CRAIG M T. The value of vehicle-to-grid in a decarbonizing California grid[J]. Journal of Power Sources, 2021, 513: 230472.
[11] CALSTART. Best practices on E-Bus and grid integration: A guide for California transit fleets[EB/OL]. (2023-03-22) [2023-12-28]. https://calstart.org/best-practices-on-e-bus-and-grid-integration-a-guide-for-california-transit-fleets.
[12] Hitachi Energy. Hitachi Energy successfully deploys first centralized EV bus charging system for Quebec City’s public transit agency, Réseau de transport de la Capitale (RTC)[EB/OL]. (2023-10-04) [2023-12-28]. https://www.hitachienergy.com/news/press-releases/2023/10/hitachi-energy-successfully-deploys-first-centralized-ev-bus-charging-system-for-quebec-citys-public-transit-agency-reseau-de-transport-de-la-capitale-rtc.
[13] Empire State Passengers Association. LIRR studying bi-mode battery-electric trains[EB/OL]. (2021-04-29) [2023-12-28]. https://www.esparail.org/news/lirr-studying-bi-mode-battery-electric-trains/.
[14] Clean Technica. Keystone, Schmeystone Part II: Air force nails biggest V2G fleet in the world[EB/OL]. (2014-11-24) [2023-12-28]. https://cleantechnica.com/2014/11/24/keystone-schmeystone-part-ii-air-force-nails-biggest-v2g-fleet-world/.
[15] ZHOU P, LUO S R, LI X Z, et al. Development status and application analysis of vehicle to grid (V2G)[J]. Journal of Donghua University (English Edition), 2019, 36(3): 284-292.
[16] 赵轩, 张元星, 李斌, 等. 国内外车网互动试点成效分析与发展建议[J]. 电力自动化设备, 2022, 42(10): 280-292.
  ZHAO Xuan, ZHANG Yuanxing, LI Bin, et al. Effect analysis and development suggestion of domestic and foreign vehicle grid integration pilots[J]. Electric Power Automation Equipment, 2022, 42(10): 280-292.
[17] 宁剑, 江长明, 张哲, 等. 可调节负荷资源参与电网调控的思考与技术实践[J]. 电力系统自动化, 2020, 44(17): 1-8.
  NING Jian, JIANG Changming, ZHANG Zhe, et al. Thinking and technical practice of adjustable load resources participating in dispatching and control of power grid[J]. Automation of Electric Power Systems, 2020, 44(17): 1-8.
[18] 田立亭, 程林, 郭剑波, 等. 虚拟电厂对分布式能源的管理和互动机制研究综述[J]. 电网技术, 2020, 44(6): 2097-2108.
  TIAN Liting, CHENG Lin, GUO Jianbo, et al. A review on the study of management and interaction mechanism for distributed energy in virtual power plants[J]. Power System Technology, 2020, 44(6): 2097-2108.
[19] YANG Y, ZHANG B P, WANG W, et al. Development pathway and practices for integration of electric vehicles and Internet of energy[C]// 2020 IEEE Sustainable Power and Energy Conference. Chengdu, China: IEEE, 2020: 2128-2134.
[20] 江苏省政府国有资产监督管理委员会. 全国最大!无锡e-Park车网互动中心正式投运[EB/OL]. (2023-10-08)[2023-12-17]. http://jsgzw.jiangsu.gov.cn/art/2023/10/8/art_11703_11033608.html. .
  Jiangsu Provincial Government State-owned Assets Supervision and Administration Commision. The largest in the country! Wuxi e-Park vehicle network interaction center officially launched[EB/OL]. (2023-10-08)[2023-12-17]. http://jsgzw.jiangsu.gov.cn/art/2023/10/8/art_11703_11033608.html.
[21] 上游新闻. 重庆公交首座光储充放能源管理综合示范站建成[EB/OL]. (2022-11-04)[2023-09-28]. https://baijiahao.baidu.com/s?id=1748536321637598723&wfr=spider&for=pc.
  Upstream News. Chongqing public transportation’s first comprehensive demonstration station for optical storage, charging and discharge energy management completed[EB/OL]. (2022-11-04)[2023-09-28]. https://baijiahao.baidu.com/s?id=1748536321637598723&wfr=spider&for=pc.
[22] MARTINI J. The airport tram: The “Green Dolphin” in Kunming/China[EB/OL]. (2021-08-17)[2024-02-28]. https://www.urban-transport-magazine.com/en/the-airport-tram-the-green-dolphin-in-kunming-china/.
[23] SIDORENKO V G, KULAGIN M A, MIKHAILOV S V. Approach to predicting failures of traction electric motors[J]. Russian Electrical Engineering, 2022, 93(9): 592-595.
[24] 沈涛, 周巧莲. 城市轨道交通车辆电池应急牵引功能的实现[J]. 城市轨道交通研究, 2016, 19(7): 110-115.
  SHEN Tao, ZHOU Qiaolian. Implementation of rail transit vehicle emergency battery traction[J]. Urban Mass Transit, 2016, 19(7): 110-115.
[25] 黄一鸣, 袁天辰, 杨俭. 高速列车弓网故障响应研究[J]. 测控技术, 2018, 37(8): 135-138.
  HUANG Yiming, YUAN Tianchen, YANG Jian. Research on fault response of pantograph and catenary system in high-speed train[J]. Measurement & Control Technology, 2018, 37(8): 135-138.
[26] 李群湛. 城市轨道交通交流牵引供电系统及其关键技术[J]. 西南交通大学学报, 2015, 50(2): 199-207.
  LI Qunzhan. Industrial frequency single-phase AC traction power supply system and its key technologies for urban rail transit[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 199-207.
[27] 宁晓芳, 柳拥军. 第三轨供电系统中受流器与第三轨的接触压力及其对受流性能的影响分析[J]. 城市轨道交通研究, 2020, 23(5): 106-109.
  NING Xiaofang, LIU Yongjun. Analysis of contact pressure between collector and conductor rail and its influence on current collecting performance in third rail power supply system[J]. Urban Mass Transit, 2020, 23(5): 106-109.
[28] 朱剑, 朱成乾. 城市轨道交通列车再生能量吸收方式[J]. 中国科技信息, 2020(12): 39-40.
  ZHU Jian, ZHU Chengqian. Absorption mode of regenerative energy of urban rail transit trains[J]. China Science and Technology Information, 2020(12): 39-40.
[29] YANG H M, SHEN W D, YU Q, et al. Coordinated demand response of rail transit load and energy storage system considering driving comfort[J]. CSEE Journal of Power and Energy Systems, 2020, 6(4): 749-759.
[30] 刘昊, 郑泽东, 李永东, 等. 电动汽车V2G技术在城市轨道交通牵引系统中的应用[J]. 控制与信息技术, 2018(5): 21-25.
  LIU Hao, ZHENG Zedong, LI Yongdong, et al. Application of electric vehicle V2G technology on urban rail traction system[J]. Control and Information Technology, 2018(5): 21-25.
[31] KRUEGER H, FLETCHER D, CRUDEN A. Vehicle-to-Grid (V2G) as line-side energy storage for support of DC-powered electric railway systems[J]. Journal of Rail Transport Planning & Management, 2021, 19: 100263.
[32] 姚海英, 单宇, 程中国, 等. 城市轨道交通车辆无电网自走行技术的应用与探讨[J]. 城市轨道交通研究, 2020, 23(12): 148-154.
  YAO Haiying, SHAN Yu, CHENG Zhongguo, et al. Application and discussion of urban rail transit vehicle netless self-running technology[J]. Urban Mass Transit, 2020, 23(12): 148-154.
[33] 何英静, 张希桢, 李晨, 等. 考虑牵引负荷的配电网附加损耗分析及应对措施[C]// 2017年“电子技术应用”智能电网会议论文集. 北京: 《电子技术应用》杂志社, 2017: 229-232.
  HE Yingjing, ZHANG Xizhen, LI Chen, et al. Analysis of additional loss of distribution network considering traction load and countermeasures[C]// Proceedings of the 2017 “Electronic Technology Application” Smart Grid Conference. Beijing, China: Application of Electronic Technique Press, 2017: 229-232.
[34] IRFAN M M, RANGARAJAN S S, COLLINS E R, et al. Enhancing the power quality of the grid interactive solar photovoltaic-electric vehicle system[J]. World Electric Vehicle Journal, 2021, 12(3): 98.
[35] 李佳琪, 徐潇源, 严正. 大规模新能源汽车接入背景下的电氢能源与交通系统耦合研究综述[J]. 上海交通大学学报, 2022, 56(3): 253-266.
  LI Jiaqi, XU Xiaoyuan, YAN Zheng. A review of coupled electricity and hydrogen energy system with transportation system under the background of large-scale new energy vehicles access[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 253-266.
[36] 和萍, 宫智杰, 靳浩然, 等. 高比例可再生能源电力系统调峰问题综述[J]. 电力建设, 2022, 43(11): 108-121.
  HE Ping, GONG Zhijie, JIN Haoran, et al. Review of peak-shaving problem of electric power system with high proportion of renewable energy[J]. Electric Power Construction, 2022, 43(11): 108-121.
[37] KUMANO T, HORITA M, SHINADA M, et al. A study on V2G based frequency control in power grid with renewable energy[J]. IFAC-PapersOnLine, 2019, 52(4): 99-104.
[38] 丁荣军, 张志学, 李红波. 轨道交通能源互联网的思考[J]. 机车电传动, 2016(1): 1-5.
  DING Rongjun, ZHANG Zhixue, LI Hongbo. An overview on rail transit energy Internet[J]. Electric Drive for Locomotives, 2016(1): 1-5.
[39] 翁国庆, 张有兵, 戚军, 等. 多类型电动汽车电池集群参与微网储能的V2G可用容量评估[J]. 电工技术学报, 2014, 29(8): 36-45.
  WENG Guoqing, ZHANG Youbing, QI Jun, et al. Evaluation for V2G available capacity of battery groups of electric vehicles as energy storage elements in microgrid[J]. Transactions of China Electrotechnical Society, 2014, 29(8): 36-45.
[40] 李佳. 含分布式可再生能源的主动配电网鲁棒优化调度[D]. 北京: 华北电力大学, 2019.
  LI Jia. Robust optimal scheduling of active distribution network with distributed renewable energy[D]. Beijing: North China Electric Power University, 2019.
[41] SULAIMAN N, HANNAN M A, MOHAMED A, et al. A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 802-814.
[42] 王海鑫, 袁佳慧, 陈哲, 等. 智慧城市车-站-网一体化运行关键技术研究综述及展望[J]. 电工技术学报, 2022, 37(1): 112-132.
  WANG Haixin, YUAN Jiahui, CHEN Zhe, et al. Review and prospect of key techniques for vehicle-station-network integrated operation in smart city[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 112-132.
[43] 刘晓飞, 张千帆, 崔淑梅. 电动汽车V2G技术综述[J]. 电工技术学报, 2012, 27(2): 121-127.
  LIU Xiaofei, ZHANG Qianfan, CUI Shumei. Review of electric vehicle V2G technology[J]. Transactions of China Electrotechnical Society, 2012, 27(2): 121-127.
[44] 曹光宇, 金勇, 喻杰, 等. 国外V2G模式的发展现状分析[J]. 上海节能, 2017(3): 115-120.
  CAO Guangyu, JIN Yong, YU Jie, et al. Analysis on development situation of foreign V2G mode[J]. Shanghai Energy Conservation, 2017(3): 115-120.
[45] CARDOSO G, STADLER M, BOZCHALUI M C, et al. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicle driving schedules[J]. Energy, 2014, 64: 17-30.
[46] BARONE G, BRUSCO G, MENNITI D, et al. How smart metering and smart charging may help a local energy community in collective self-consumption in presence of electric vehicles[J]. Energies, 2020, 13(16): 4163.
[47] MENA R, HENNEBEL M, LI Y F, et al. A risk-based simulation and multi-objective optimization framework for the integration of distributed renewable generation and storage[J]. Renewable and Sustainable Energy Reviews, 2014, 37: 778-793.
[48] 科普中国科学百科. 电动汽车V2G技术[EB/OL]. (2022-12-09)[2023-02-17]. https://baike.baidu.com/item/%E7%94%B5%E5%8A%A8%E6%B1%BD%E8%BD%A6V2G%E6%8A%80%E6%9C%AF/21501130?fr=aladdin.
  Science Encyclopedia of China. Electric vehicle V2G technology[EB/OL]. (2022-12-09)[2023-02-17]. https://baike.baidu.com/item/%E7%94%B5%E5%8A%A8%E6%B1%BD%E8%BD%A6V2G%E6%8A%80%E6%9C%AF/21501130?fr=aladdin.
[49] YANG S, LUAN Z W, QIN Z. Research of charging (discharging) orderly and optimizing load curve for electric vehicles based on dynamic electric price and V2G[C]// 2016 Asia Conference on Power and Electrical Engineering. France: MATEC, 2016: 06006.
[50] 李怡然, 张姝, 肖先勇, 等. V2G模式下计及供需两侧需求的电动汽车充放电调度策略[J]. 电力自动化设备, 2021, 41(3): 129-135.
  LI Yiran, ZHANG Shu, XIAO Xianyong, et al. Charging and discharging scheduling strategy of EVs considering demands of supply side and demand side under V2G mode[J]. Electric Power Automation Equipment, 2021, 41(3): 129-135.
[51] SHI R F, SUN C H, ZHOU Z Y, et al. A robust economic dispatch of residential microgrid with wind power and electric vehicle integration[C]// 2016 Chinese Control and Decision Conference. Yinchuan, China: IEEE, 2016: 3672-3676.
[52] SHI R F, LI S P, ZHANG P H, et al. Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization[J]. Renewable Energy, 2020, 153: 1067-1080.
[53] GAJDUK A, TODOROVSKI M, KURTHS J, et al. Improving power grid transient stability by plug-in electric vehicles[J]. New Journal of Physics, 2014, 16(11): 115011.
[54] EGBUE O, UKO C, ALDUBAISI A, et al. A unit commitment model for optimal vehicle-to-grid operation in a power system[J]. International Journal of Electrical Power & Energy Systems, 2022, 141: 108094.
[55] MWASILU F, JUSTO J J, KIM E K, et al. Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration[J]. Renewable and Sustainable Energy Reviews, 2014, 34: 501-516.
[56] FATHABADI H. Novel solar powered electric vehicle charging station with the capability of vehicle-to-grid[J]. Solar Energy, 2017, 142: 136-143.
[57] LUND H, KEMPTON W. Integration of renewable energy into the transport and electricity sectors through V2G[J]. Energy Policy, 2008, 36(9): 3578-3587.
[58] HANNAN M A, MOLLIK M S, AL-SHETWI A Q, et al. Vehicle to grid connected technologies and charging strategies: Operation, control, issues and recommendations[J]. Journal of Cleaner Production, 2022, 339: 130587.
[59] HOSSAIN LIPU M S, HANNAN M A, KARIM T F, et al. Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook[J]. Journal of Cleaner Production, 2021, 292: 126044.
[60] PREM P, SIVARAMAN P, SAKTHI SURIYA RAJ J S, et al. Fast charging converter and control algorithm for solar PV battery and electrical grid integrated electric vehicle charging station[J]. Automatika, 2020, 61(4): 614-625.
[61] YU H, NIU S Y, SHANG Y T, et al. Electric vehicles integration and vehicle-to-grid operation in active distribution grids: A comprehensive review on power architectures, grid connection standards and typical applications[J]. Renewable and Sustainable Energy Reviews, 2022, 168: 112812.
[62] 能源评论. 充电仍是补能主流 V2G呈现三大优势[EB/OL]. (2022-06-28)[2023-03-13]. https://www.dongchedi.com/article/7114220413873422859?zt=pc_redirect.
  Energy Review. Charging is still the mainstream of replenishment V2G presents three major advantages[EB/OL]. (2022-06-28)[2023-03-13]. https://www.dongchedi.com/article/7114220413873422859?zt=pc_redirect.
[63] MITTELMAN G, KARIV Y, COHEN Y, et al. Techno-economic analysis of energy supply to personal rapid transit (PRT) systems[J]. Applied Energy, 2022, 306: 118006.
[64] MRAD M, HIDRI L. Optimal consumed electric energy while sequencing vehicle trips in a personal rapid transit transportation system[J]. Computers & Industrial Engineering, 2015, 79: 1-9.
[65] SUN S, WANG B. Low-energy mountain transportation system with PRT rail transit technology[J]. Journal of Landscape Research, 2020, 12(3): 18-20.
[66] 吴科佑, 许嘉宏, 韩钰婷. 某国际机场PRT交通系统工程供配电设计探讨[J]. 建筑电气, 2020, 39(9): 70-74.
  WU Keyou, XU Jiahong, HAN Yuting. Discussion on power supply and distribution design of PRT traffic system project in an international airport[J]. Building Electricity, 2020, 39(9): 70-74.
[67] 刘亚宁, 刘家栋, 李桂安. PRT个人捷运系统的发展趋势及可行性研究[J]. 科技创新导报, 2020, 17(15): 114-115.
  LIU Yaning, LIU Jiadong, LI Guian. Development trend and feasibility study of PRT personal rapid transit system[J]. Science and Technology Innovation Herald, 2020, 17(15): 114-115.
[68] 杨清峻. PRT交通系统发展现状及系统构成[J]. 价值工程, 2021, 40(7): 217-218.
  YANG Qingjun. PRT transportation system development status and system composition[J]. Value Engineering, 2021, 40(7): 217-218.
[69] 卢地华, 陈自强. 基于双充电状态的锂离子电池健康状态估计[J]. 上海交通大学学报, 2022, 56(3): 342-352.
  LU Dihua, CHEN Ziqiang. State of health estimation of lithium-ion batteries based on dual charging state[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 342-352.
[70] MIAO Y, HYNAN P, VON JOUANNE A, et al. Current Li-ion battery technologies in electric vehicles and opportunities for advancements[J]. Energies, 2019, 12(6): 1074.
[71] ZUBI G, DUFO-LóPEZ R, CARVALHO M, et al. The lithium-ion battery: State of the art and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 89: 292-308.
[72] YAVUZ D, FIGEN A. Using personal rapid transit as an effective transport solution in historical downtown areas: A case from Historic Kemeralt?, I ˙zmir[J]. Journal of Planning, 2023, 33(1): 86-104.
文章导航

/