机械与动力工程

面向正向开发的民用飞机飞控系统功能设计方法

展开
  • 1.上海交通大学 机械与动力工程学院, 上海 200240
    2.中国商飞上海飞机设计研究院,上海 201210
程帅(1991-),博士生,主要研究方向为复杂系统设计理论与动力学行为分析.

收稿日期: 2022-04-06

  修回日期: 2022-05-25

  录用日期: 2022-06-06

  网络出版日期: 2023-10-31

基金资助

科技部创新方法工作专项(2020IM020200)

A Forward Development Method for Functional Design of Civil Aircraft Flight Control System

Expand
  • 1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. COMAC Shanghai Aircraft Design and Research Institute, Shanghai 201210, China

Received date: 2022-04-06

  Revised date: 2022-05-25

  Accepted date: 2022-06-06

  Online published: 2023-10-31

摘要

功能设计是复杂系统设计开发中极其重要的任务,需要依靠正向开发方法来保障功能设计的正确性和完整性.为此,以民用飞机的飞行控制系统(飞控系统)为例,提出面向正向开发的功能设计方法.首先,借助系统建模语言建立飞机级到系统级再到部件级的功能需求关系模型;然后,按照SAE ARP4754A 民用飞机系统开发指南中的安全性评估方法分析安全性需求,并结合功能需求构建飞控系统的功能知识集;最后,采用功能单元方块图和功能集成方块图对飞控系统进行功能建模.该方法对复杂系统的功能设计具有借鉴意义.

本文引用格式

程帅, 李宸, 张逸伦, 汤超, 孟祥慧, 谢友柏 . 面向正向开发的民用飞机飞控系统功能设计方法[J]. 上海交通大学学报, 2023 , 57(10) : 1305 -1315 . DOI: 10.16183/j.cnki.jsjtu.2022.100

Abstract

Functional design is an extremely important part in the design and development of complex systems. It is necessary to establish a forward development method to ensure the correctness and completeness of functional design. Therefore, taking the flight control system of civil aircraft as an example, a forward development method for functional design is proposed. First, system modeling language is used to establish the functional requirements relationship model from aircraft level to system level and then to item level. Then, the functional requirements are combined with the safety requirements in SAE ARP4754A aircraft development guide to construct the functional knowledge set of the flight control system. Finally, the functional model of the flight control system is established based on functional unit block diagram and functional integration block diagram. This method can be used as a reference for the functional design of complex systems.

参考文献

[1] 高金源, 冯华南. 民用飞机飞行控制系统[M]. 北京: 北京航空航天大学出版社, 2018.
[1] GAO Jinyuan, FENG Huanan. Flight control system for civil aircraft[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2018.
[2] 谢友柏. 关于MBSE和MBD的思考[J]. 科技导报, 2019, 37(7): 6-11.
[2] XIE Youbai. Thinking about MBSE and MBD[J]. Science & Technology Review, 2019, 37(7): 6-11.
[3] KURTOGLU T, TUMER I Y. A graph-based fault identification and propagation framework for functional design of complex systems[J]. Journal of Mechanical Design, 2008, 130(5): 051401.
[4] NASYROV R, YUSUPOVA N, ZULKARNEEV R, et al. The concept of decision support in evaluating the functional state of complex system of the biological type[C]//Proceedings of the 21st International Workshop on Computer Science and Information Technologies. Ufa, Russia. Paris, France: Atlantis Press, 2019: 151-156.
[5] MADNI A M. MBSE testbed for rapid, cost-effective prototyping and evaluation of system modeling approaches[J]. Applied Sciences, 2021, 11(5): 2321.
[6] 梅芊, 黄丹, 卢艺. 基于MBSE的民用飞机功能架构设计方法[J]. 北京航空航天大学学报, 2019, 45(5): 1042-1051.
[6] MEI Qian, HUANG Dan, LU Yi. Design method of civil aircraft functional architecture based on MBSE[J]. Journal of Beijing University of Aeronautics & Astronautics, 2019, 45 (5): 1042-1051.
[7] 任炳轩, 卢艺, 傅山, 等. 基于MBSE的民机功能需求辨识与确认[J]. 系统工程与电子技术, 2019, 41(9): 2016-2024.
[7] REN Bingxuan, LU Yi, FU Shan, et al. Identification and verification of civil aircraft functional requirements through MBSE[J]. Systems Engineering & Electronics, 2019, 41 (9): 2016-2024.
[8] 王豪, 高亚奎, 戍永灵, 等. 基于功能模型的飞控系统安全性设计技术研究[J]. 测控技术, 2017, 36(5): 77-81.
[8] WANG Hao, GAO Yakui, SHU Yongling, et al. Research on safety design technology of flight control system based on function model[J]. Measurement & Control Technology, 2017, 36 (5): 77-81.
[9] LAUKOTKA F, HANNA M, KRAUSE D. Digital twins of product families in aviation based on an MBSE-assisted approach[J]. Procedia CIRP, 2021, 100: 684-689.
[10] 王文浩, 毕文豪, 张安, 等. 基于MBSE的民机系统功能建模方法[J]. 系统工程与电子技术, 43(10): 1-9.
[10] WANG Wenhao, BI Wenhao, ZHANG An, et al. Function modeling method of civil aircraft system based on MBSE[J]. Systems Engineering & Electronics, 2021, 43 (10): 1-9.
[11] MADNI A M, SIEVERS M. Model-based systems engineering: Motivation, current status, and research opportunities[J]. Systems Engineering, 2018, 21(3): 172-190.
[12] LI X, ZHU Y, FAN Y, et al. A comparison of SAE ARP 4754A and ARP 4754[J]. Procedia Engineering, 2011, 17: 400-406.
[13] SAE ARP4754. A Guidelines for development of civil aircraft and systems[EB/OL]. (2010-12-21)[2022-04-06]. http://www.sae.org/technical/standards/ARP4754A.
[14] 方亚杰, 佟森峰, 付磊, 等. ARP4754A初步解读及其在飞机EWIS设计中的应用[J]. 飞机设计, 2018, 38(6): 12-17.
[14] FANG Yajie, TONG Senfeng, FU Lei, et al. The preliminary interpretation against ARP4754A and its application discussion in aircraft EWIS design[J]. Aircraft Design, 2018, 38 (6): 12-17.
[15] 石鹏飞, 张航, 陈洁. 先进民机飞控系统安全性设计考虑[J]. 航空科学技术, 2019, 30(12): 52-58.
[15] SHI Pengfei, ZHANG Hang, CHEN Jie. Safety design considerations for advanced civil aircraft flight control system[J]. Aeronautical Science & Technology, 2019, 30 (12): 52-58.
[16] SASAJIMA M, KITAMURA Y, IKEDA M, et al. A representation language for behavior and function: FBRL[J]. Expert Systems with Applications, 1996, 10(3/4): 471-479.
[17] PAHL G, BEITZ W, FELDHUSEN J A, et al. Engineering design: A systematic approach[M]. London: Springer, 2007.
[18] STONE R B, WOOD K L. Development of a functional basis for design[J]. Journal of Mechanical Design, 2000, 122(4): 359-370.
[19] 赵萌, 陈泳, 汤超, 等. 集成状态的广义功能建模方法[J]. 上海交通大学学报, 2020, 54(12): 8-16.
[19] ZHAO Meng, CHEN Yong, TANG Chao, et al. A state-integrated approach for generalized functional modeling[J]. Journal of Shanghai Jiao Tong University, 2020, 54 (12): 8-16.
[20] 谢友柏. 设计科学与设计竞争力[M]. 北京: 科学出版社, 2018.
[20] XIE Youbai. Design science and design competitiveness[M]. Beijing: Science Press, 2018.
[21] ROY U, PRAMANIK N, SUDARSAN R, et al. Function-to-form mapping: Model, representation and applications in design synthesis[J]. Computer-Aided Design, 2001, 33(10): 699-719.
文章导航

/