收稿日期: 2022-06-01
修回日期: 2022-09-01
录用日期: 2022-10-17
网络出版日期: 2023-10-31
基金资助
国家重点研发计划项目(2021YFB2501200);国家自然基金面上项目(52172324);国家自然基金面上项目(52172379);陕西省重点研发计划项目(2021SF-483);陕西省自然科学基础研究计划项目(2021JM-184);西安市智慧高速公路信息融合与控制重点实验室(长安大学)开放基金项目(300102321502);中央高校基本科研业务费资助项目(300102240203)
3D Path Planning of UAV Based on Adaptive Slime Mould Algorithm Optimization
Received date: 2022-06-01
Revised date: 2022-09-01
Accepted date: 2022-10-17
Online published: 2023-10-31
针对无人机在三维路径规划时存在搜素范围和寻优性能不足等问题,以及现有黏菌算法(SMA)寻优精度不足, 易陷入局部最优的缺陷,提出了一种基于自适应黏菌算法(GSMA)优化的无人机三维路径规划方法.首先,根据无人机经过的实际环境,建立三维地形、威胁源和无人机自身约束条件;其次,针对搜素范围不足的问题,设计改进的Logistic混沌映射增加种群的多样性并扩大搜索范围,提升了SMA的全局搜索能力;然后,设计一种非线性自适应惯性权重因子,将线性收敛方式改进为非线性收敛,利用权重值更新黏菌位置,提高了收敛速度;最后,在算法后期中设计自适应柯西变异,增大了黏菌的搜索空间,寻优精度也得到了提高.实验结果表明,GSMA相比于灰狼优化(GWO)算法、SMA和海鸥算法(SOA)3种算法,路径更短且更平滑,收敛速度更快,寻优精度更高,同时能耗更低,进一步提升了无人机的路径规划能力.
黄鹤, 高永博, 茹锋, 杨澜, 王会峰 . 基于自适应黏菌算法优化的无人机三维路径规划[J]. 上海交通大学学报, 2023 , 57(10) : 1282 -1291 . DOI: 10.16183/j.cnki.jsjtu.2022.191
Aimed at the problems of insufficient search range and optimization performance in 3D path planning of unmanned aerial vehicles (UAVs), and the lack of optimization accuracy of the existing slime mould algorithm (SMA), which is easy to fall into local optimization, a 3D path planning method for UAV based on adaptive slime mould algorithm optimization is proposed. First, according to the actual environment that the UAV passes through, the 3D terrain, the threat source and the constraints of the AUV were established. Next, for the problem of insufficient search range, an improved Logistic chaotic map is designed to increase the diversity of the population and expand the search range, which improves the global search ability of SMA. Then, a nonlinear adaptive inertia weight factor is designed to change the linear convergence method into nonlinear convergence, and the weight value is used to update the position of the slime mould, which improves the convergence speed. Finally, in the later stage of the algorithm, the adaptive cauchy mutation is designed, which increases the search space of the slime mould and improves the optimization accuracy. The experimental results show that GSMA has a shorter and smoother path, a faster convergence, a higher optimization accuracy, and a lower energy consumption compared with the gray wolf optimizer (GWO) algorithm, the SMA, and the seagull algorithm (SOA), which further improves the path planning capability of the UAV.
[1] | EVDOKIMENKOV V N, KRASILSHCHIKOV M N, LYAPIN N A. Guaranteeing UAV trajectory control when approaching a maneuvering air target[J]. Journal of Computer and Systems Sciences International, 2018, 57(5): 789-800. |
[2] | GALYAEV A A, LYSENKO P V, YAKHNO V P. 2D optimal trajectory planning problem in threat environment for UUV with non-uniform radiation pattern[J]. Sensors, 2021, 21(2): 396. |
[3] | GUO Y, LIU X, ZHANG W, et al. 3D path planning method for UAV based on improved artificial potential field[J]. Journal of Northwestern Polytechnical University, 2020, 38(5): 977-986. |
[4] | MANDLOI D, ARYA R, VERMA A K. Unmanned aerial vehicle path planning based on A* algorithm and its variants in 3D environment[J]. International Journal of Systems Assurance Engineering and Management, 2021(1): 1-11. |
[5] | LIU X H, ZHANG D, ZHAN J, et al. A path planning method based on the particle swarm optimization trained fuzzy neural network algorithm[J]. Cluster Computing, 2021, 24(3): 1901-1915. |
[6] | SOUNDARYA M S, ANUSHA D K, ROHITH P, et al. Optimal path planning of UAV using grey wolf optimiser[J]. International Journal of Computational Systems Engineering, 2019, 5(3): 129-136. |
[7] | 黄鹤, 李潇磊, 杨澜, 等. 引入改进蝠鲼觅食优化算法的水下无人航行器三维路径规划[J]. 西安交通大学学报, 2022, 56(7): 9-18. |
[7] | HUANG He, LI Xiaolei, YANG Lan, et al. 3D path planning for unmanned underwater vehicles using improved manta foraging optimization algorithm[J]. Journal of Xi’an Jiaotong University, 2022, 56(7): 9-18. |
[8] | 王翼虎, 王思明. 基于改进粒子群算法的无人机路径规划[J]. 计算机工程与科学, 2020, 42(9): 1690-1696. |
[8] | WANG Yihu, WANG Siming. UAV path planning based on improved particle swarm optimization[J]. Computer Engineering and Science, 2020, 42(9): 1690-1696. |
[9] | 黄书召, 田军委, 乔路, 等. 基于改进遗传算法的无人机路径规划[J]. 计算机应用, 2021, 41(2): 390-397. |
[9] | HUANG Shuzhao, TIAN Junwei, QIAO Lu, et al. UAV path planning based on improved genetic algorithm[J]. Computer Application, 2021, 41(2): 390-397. |
[10] | 吴坤, 谭劭昌. 基于改进鲸鱼优化算法的无人机航路规划[J]. 航空学报, 2020, 41(Sup.2): 107-114. |
[10] | WU Kun, TAN Shaochang. UAV route planning based on improved whale optimization algorithm[J]. Aeronautical Journal, 2020, 41 (Sup.2): 107-114. |
[11] | LI S, CHEN H, WANG M, et al. Slime mould algorithm: A new method for stochastic optimization[J]. Future Generation Computer Systems. 2020, 111(1): 300-323. |
[12] | 肖亚宁, 孙雪. 基于混沌精英黏菌算法的无刷直流电机转速控制[J]. 科学技术与工程, 2021, 50(28): 4-5. |
[12] | XIAO Yaning, SUN Xue. Brushless DC motor speed control based on chaotic elite slime mould algorithm[J]. Science Technology and Engineering, 2021, 50(28): 4-5. |
[13] | 高文欣, 刘升, 肖子雅, 等. 柯西变异和自适应权重优化的蝴蝶算法[J]. 计算机工程与应用, 2020, 56(15): 43-50. |
[13] | GAO Wenxin, LIU Sheng, XIAO Ziya, et al. Butterfly algorithm for Cauchy variation and adaptive weight optimization[J]. Computer Engineering and Applications, 2020, 56(15): 43-50. |
[14] | 郭雨鑫, 刘升, 高文欣, 等. 多策略改进哈里斯鹰优化算法[J]. 微电子学与计算机, 2021, 38(7): 18-24. |
[14] | GUO Yuxin, LIU Sheng, GAO Wenxin, et al. Multi-strategy improved Harris hawk optimization algorithm[J]. Microelectronics and Computer Science, 2021, 38(7): 18-24. |
[15] | 王涛. 非线性权重和柯西变异的蝗虫算法[J]. 微电子学与计算机, 2020, 37(5): 82-86. |
[15] | WANG Tao. Locust algorithm for nonlinear weights and Cauchy variation[J]. Microelectronics and Computers, 2020, 37(5): 82-86. |
[16] | 王永琦, 江潇潇. 基于混合灰狼算法的机器人路径规划[J]. 计算机工程与科学, 2020, 42(7): 1294-1301. |
[16] | WANG Yongqi, JIANG Xiaoxiao. Robot path planning based on hybrid gray wolf algorithm[J]. Computer Engineering and Science, 2020, 42(7): 1294-1301. |
[17] | 岳文静, 孙鹏, 陈志. 基于改进海鸥算法的认知无人机网络频谱分配[J]. 计算机技术与发展, 2021, 31(9): 7-12. |
[17] | YUE Wenjing, SUN Peng, CHEN Zhi. Spectrum allocation for cognitive UAV networks based on improved seagull algorithm[J]. Computer Technology and Development, 2021, 31(9): 7-12. |
/
〈 |
|
〉 |