船舶海洋与建筑工程

电伴热下极地装备踏步板构件的对流换热影响

  • 韩雪阳 ,
  • 吴琳 ,
  • 刘志兵 ,
  • 于东玮 ,
  • 孔祥逸 ,
  • 张大勇
展开
  • 1.大连理工大学 海洋科学与技术学院,辽宁 盘锦 124221
    2.中国船舶及海洋工程设计研究院,上海 200021
    3.大连理工大学 运载工程与力学学部,辽宁 大连 116023
    4.大连理工大学 宁波研究院,浙江 宁波 315000
韩雪阳(1998—),硕士生,从事海洋工程装备防寒设计研究.
张大勇,教授,博士生导师;E-mail:zhangdy@dlut.edu.cn.

收稿日期: 2023-02-10

  修回日期: 2023-09-04

  录用日期: 2023-09-11

  网络出版日期: 2023-10-11

基金资助

工信部高技术船舶科研项目(CBG2N21-2-2);中央高校基本科研业务费资助(DUT22QN237)

Influence of Convection Heat Transfer of Tread Plate in Polar Environment

  • HAN Xueyang ,
  • WU Lin ,
  • LIU Zhibing ,
  • YU Dongwei ,
  • KONG Xiangyi ,
  • ZHANG Dayong
Expand
  • 1. College of Marine Science and Technology, Dalian University of Technology, Panjin 124221, Liaoning, China
    2. China Shipbuilding and Ocean Engineering Design and Research Institute, Shanghai 200021, China
    3. Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116023, Liaoning, China
    4. Ningbo Institute of Dalian University of Technology, Ningbo 315000, Zhejiang, China

Received date: 2023-02-10

  Revised date: 2023-09-04

  Accepted date: 2023-09-11

  Online published: 2023-10-11

摘要

为解决恶劣极地环境引起的海洋装备防寒问题,工程上通常采用电伴热的方式.采用数值模拟和实验的方法,对电伴热踏步板构件在典型极地环境下热平衡的影响因素进行分析.环境要素为风速和温度,风速为0~40 m/s、温度为-40~0 ℃.基于数值仿真和实验测试获得电加热踏步板构件在不同风速及温度下的对流换热系数.结果表明,增大风速和降低温度都会增大踏步板的对流换热系数;风速是影响踏步板换热的主要因素,而温度的影响较小.基于实验数据,参考平板构件对流换热的经典理论,建立电加热踏步板构件的对流换热系数预测模型,并采用数值仿真验证该模型的正确性.

本文引用格式

韩雪阳 , 吴琳 , 刘志兵 , 于东玮 , 孔祥逸 , 张大勇 . 电伴热下极地装备踏步板构件的对流换热影响[J]. 上海交通大学学报, 2024 , 58(11) : 1687 -1697 . DOI: 10.16183/j.cnki.jsjtu.2023.042

Abstract

To solve the problem of cold protection for marine equipment against cold caused by the harsh polar environment, electrical tracing is commonly used in engineering. In this paper, numerical simulation and experimental methods are used to analyze the influencing factors of thermal balance of electric heat tracing tread plate components in typical polar environment with wind speed ranging from 0 to 40 m/s and temperature ranging from -40 ℃ to 0 ℃. Based on numerical simulation and experimental test, the convective heat transfer coefficient of electric heating tread plate components at different wind speeds and temperatures is obtained. The results show that increasing wind speed and decreasing temperature will increase the convective heat transfer coefficient of the tread plate. Wind speed is the main factor affecting the heat transfer of the tread plate, while temperature has little effect. Finally, based on the experimental data and the classical theory of convective heat transfer of plate components, a prediction model of convective heat transfer coefficient of electric heating tread plate components is established, and the correctness of the model is verified by numerical simulation.

参考文献

[1] 朱建钢, 颜其德, 凌晓良. 南极资源及其开发利用前景分析[J]. 中国软科学, 2005(8): 17-22.
  ZHU Jiangang, YAN Qide, LING Xiaoliang. The analysis of Antarctic resources, and their exploitation and potential utilization[J]. China Soft Science, 2005(8): 17-22.
[2] 谢强, 陈海龙, 章继峰. 极地航行船舶及海洋平台防冰和除冰技术研究进展[J]. 中国舰船研究, 2017, 12(1): 45-53.
  XIE Qiang, CHEN Hailong, ZHANG Jifeng. Research progress of anti-icing/deicing technologies for polar ships and offshore platforms[J]. Chinese Journal of Ship Research, 2017, 12(1): 45-53.
[3] 沈杰, 白旭. 基于Fluent和FENSAP-ICE的极区海洋平台甲板结构结冰数值模拟[J]. 极地研究, 2020, 32(2): 177-183.
  SHEN Jie, BAI Xu. Numerical simulations of deck structure icing on polar offshore platforms based on fluent and fensap-ice[J]. Chinese Journal of Polar Research, 2020, 32(2): 177-183.
[4] 陆煊, 崔玫, 曹洪波, 等. 船舶防冻除冰技术现状与发展[J]. 船海工程, 2016, 45(2): 37-39.
  LU Xuan, CUI Mei, CAO Hongbo, et al. Present situation and development of de-icing and prevent frostbite technology of ships[J]. Ship & Ocean Engineering, 2016, 45(2): 37-39.
[5] 操太春, 吴刚, 孔祥逸, 等. 极地海洋工程装备圆管结构的对流换热影响[J]. 上海交通大学学报, 2023, 57(1): 17-23.
  CAO Taichun, WU Gang, KONG Xiangyi, et al. Influence of convective heat transfer on circular tube structure of polar ocean engineering equipment[J]. Journal of Shanghai Jiao Tong University, 2023, 57(1): 17-23.
[6] YANG M, KHAN F I, LYE L, et al. Risk-based winterization for vessels operations in Arctic environments[J]. Journal of Ship Production and Design, 2013, 29(4): 199-210.
[7] ABS. Guide for building and classing vessels intended for navigation in polar waters:ABS 163-2008[S]. Houston, USA: ABS, 2008.
[8] 李金平, 董玉慧, 李彩军, 等. 寒冷地区空气源热泵辅助太阳能热水器供暖性能[J]. 上海交通大学学报, 2023, 57(7): 910-920.
  LI Jinping, DONG Yuhui, LI Caijun, et al. Performance of solar vacuum tube water heater-air source heat pump system in cold area[J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 910-920.
[9] INCROPERA F P, DEWITT D P. Fundamentals of heat and mass transfer[M]. 5th ed. New York, USA: John Wiley & sons, 2002.
[10] ZONTUL H, HAMZAH H, KURTULMU? N, et al. Investigation of convective heat transfer and flow hydrodynamics in rectangular grooved channels[J]. International Communications in Heat and Mass Transfer, 2021, 126: 105366.
[11] CHURCHILL S W. A comprehensive correlating equation for forced convection from flat plates[J]. AIChE Journal, 1976, 22(2): 264-268.
[12] DANOV S N, ARAI N, CHURCHILL S W. Exact formulations and nearly exact numerical solutions for convection in turbulent flow between parallel plates[J]. International Journal of Heat and Mass Transfer, 2000, 43(15): 2767-2777.
[13] 郑卉, 钱宏亮, 金晓飞, 等. 钢构件对流换热系数计算方法综述[C]//第十五届空间结构学术会议论文集. 上海, 2014: 409-414.
  ZHENG Fen, QIAN Hongliang, JIN Xiaofei, et al. Summary of calculation methods for convective heat transfer coefficient of steel members[C]//Proceedings of the 15th Spatial Structure Academic Conference. Shanghai, China, 2014: 409-414.
[14] 李烨, 盈亮, 胡平, 等. 圆截面管对流换热系数的实验研究[J]. 热加工工艺, 2013, 42(19): 15-18.
  LI Ye, YING Liang, HU Ping, et al. Experimental investigation of convectional heat transfer coefficient in circular cross-section tubes[J]. Hot Working Technology, 2013, 42(19): 15-18.
文章导航

/