机械与动力工程

基于优先权与双可变时间窗的大型热轧生产线机会维护建模

展开
  • 上海交通大学 机械与动力工程学院,上海 200240
毛雯欣(1998-),硕士生,从事设备维护决策研究.
周晓军,副教授,博士生导师; E-mail: zzhou745@sjtu.edu.cn.

收稿日期: 2023-05-04

  修回日期: 2023-09-11

  录用日期: 2023-09-20

  网络出版日期: 2023-10-13

基金资助

国家重点研发计划(2020YFB1711103);国家自然科学基金(52075336)

Opportunistic Maintenance Modeling of Large-Scale Hot Rolling Production Line Based on Maintenance Priority and Dual Variable Time Window

Expand
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2023-05-04

  Revised date: 2023-09-11

  Accepted date: 2023-09-20

  Online published: 2023-10-13

摘要

为解决大型热轧生产线日常动态维护和支撑辊定期更换带来的维护需求差异问题,综合考虑长距离条件下的维护资源及停机时间限制,引入维护优先权规则识别部件的组合维护判断次序,构建双可变时间窗规则辨别部件是否维护并区分维护需求,进而建立系统整体动态机会维护模型.实例分析表明,该模型可有效解决维护资源和停机时间限制下大型热轧生产线的差异化维护调度问题,且比传统基于时间窗的模型更具成本优势.

本文引用格式

毛雯欣, 周晓军 . 基于优先权与双可变时间窗的大型热轧生产线机会维护建模[J]. 上海交通大学学报, 2024 , 58(8) : 1221 -1230 . DOI: 10.16183/j.cnki.jsjtu.2023.173

Abstract

To solve the problem of differential maintenance demand caused by daily dynamic maintenance and periodic replacement of support rolls in large-scale hot rolling lines, a maintenance priority rule is introduced to identify maintenance judgment order of components under long distance condition and downtime constraint. A dual variable time window rule is constructed to identify whether components should be maintained and distinguish maintenance demand, and then a dynamic opportunity maintenance model is established for the system. The case study shows that the model can effectively solve the problem of differential maintenance scheduling for large-scale hot rolling lines under the constraints of maintenance resources and downtime, and has more cost advantages than the traditional time-window-based model.

参考文献

[1] LIM J H, PARK D H. Optimal periodic preventive maintenance schedules with improvement factors depending on number of preventive maintenances[J]. Asia-Pacific Journal of Operational Research, 2007, 24(1): 111-124.
[2] PONGPECH J, MURTHY D N P. Optimal periodic preventive maintenance policy for leased equipment[J]. Reliability Engineering & System Safety, 2006, 91(7): 772-777.
[3] SHEU S H. A modified block replacement policy with two variables and general random minimal repair cost[J]. Journal of Applied Probability, 1996, 33(2): 557-572.
[4] LU Y, SUN L, KANG J, et al. Opportunistic maintenance optimization for offshore wind turbine electrical and electronic system based on rolling horizon approach[J]. Journal of Renewable and Sustainable Energy, 2017, 9(3): 033307.
[5] XIA T, XI L, ZHOU X, et al. Dynamic maintenance decision-making for series-parallel manufacturing system based on MAM-MTW methodology[J]. European Journal of Operational Research, 2012, 221(1): 231-240.
[6] ZHOU X, LU B. Preventive maintenance scheduling for serial multi-station manufacturing systems with interaction between station reliability and product quality[J]. Computers & Industrial Engineering, 2018, 122: 283-291.
[7] SONG S, LI Q, FELDER F A, et al. Integrated optimization of offshore wind farm layout design and turbine opportunistic condition-based maintenance[J]. Computers & Industrial Engineering, 2018, 120: 288-297.
[8] DO P, ASSAF R, SCARF P, et al. Modelling and application of condition-based maintenance for a two-component system with stochastic and economic dependencies[J]. Reliability Engineering & System Safety, 2019, 182: 86-97.
[9] COLLEDANI M, MAGNANINI M C, TOLIO T. Impact of opportunistic maintenance on manufacturing system performance[J]. CIRP Annals, 2018, 67(1): 499-502.
[10] LU B, ZHOU X. Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration[J]. Reliability Engineering & System Safety, 2017, 168: 116-127.
[11] 俞梦琦, 史凯龙, 周晓军. 基于双时间窗的多设备串行系统机会维护策略[J]. 上海交通大学学报, 2020, 54(1): 69-75.
  YU Mengqi, SHI Kailong, ZHOU Xiaojun. Opportunistic maintenance strategy for multi-unit serial systems based on dual time window[J]. Journal of Shanghai Jiao Tong University, 2020, 54(1): 69-75.
[12] ZHOU X, NING X. Maintenance gravity window based opportunistic maintenance scheduling for multi-unit serial systems with stochastic production waits[J]. Reliability Engineering & System Safety, 2021, 215: 107828.
[13] MOSHEIOV G, SARIG A, STRUSEVICH V A, et al. Two-machine flow shop and open shop scheduling problems with a single maintenance window[J]. European Journal of Operational Research, 2018, 271(2): 388-400.
[14] YANG L, ZHAO Y, PENG R, MA X. Opportunistic maintenance of production systems subject to random wait time and multiple control limits[J]. Journal of Manufacturing Systems, 2018, 47(4): 12-34.
[15] ZHANG C, GAO W, GUO S, et al. Opportunistic maintenance for wind turbines considering imperfect, reliability-based maintenance[J]. Renewable energy, 2017, 103: 606-612.
[16] CAVALCA K L. Availability optimization with genetic algorithm[J]. International Journal of Quality & Reliability Management, 2003, 20(7): 847-863.
[17] 韩李杰. 考虑备件和维护人力资源的串联系统机会维护[D]. 上海: 上海交通大学, 2016.
  HAN Lijie. Opportunity maintenance of serial system considering spare parts and human resource[D]. Shanghai: Shanghai Jiao Tong University, 2016.
[18] QIN W, ZHUANG Z, LIU Y, et al. Sustainable service oriented equipment maintenance management of steel enterprises using a two-stage optimization approach[J]. Robotics and Computer-Integrated Manufacturing, 2022, 75: 102311.
[19] LUO M, WU S, SCARF P. Models of imperfect repair[M]//DE ALMEIDA A T, EKENBERG L, SCARF P, et al. Multicriteria and optimization models for risk, reliability, and maintenance decision analysis. Switzerland: Springer, 2022: 391-402.
[20] BALAKRISHNAN N, KATERI M. On the maximum likelihood estimation of parameters of Weibull distribution based on complete and censored data[J]. Statistics & Probability Letters, 2008, 78(17): 2971-2975.
文章导航

/