收稿日期: 2023-05-31
修回日期: 2023-08-22
录用日期: 2023-08-31
网络出版日期: 2023-09-25
Assessment Model for Interregional Electricity Price Difference and Cross-Regional Electricity Trading Volume Considering Carbon Cost
Received date: 2023-05-31
Revised date: 2023-08-22
Accepted date: 2023-08-31
Online published: 2023-09-25
在实现“双碳”目标背景下,电力行业碳减排任务亟待完成;跨区电力交易能实现富余风光资源异地消纳,助力电力系统低碳转型.由于互联区域电源结构差异客观存在,所以碳成本对区域内出清电价影响程度不同,进而形成区域间动态电价差,影响跨区电力交易结果;交易结果又会加剧电源结构差异,进一步影响区间电价差.为此,提出一种计及碳成本的区间电价差与跨区电力交易量评估模型,将碳成本引入电力系统生产过程,理顺区间电价差和跨区电力交易的关系.在跨区电力交易量的评估中,以区间动态电价差为信号确定跨区电力交易量;在区间电价差的评估中,以各机组年收益率为依据更新区内电源结构,对比电源结构迭代前、后的电价差.以两互联地区开展跨区电力交易为例,算例仿真结果表明:所提模型能够有效评估区域间动态电价差和跨区电力交易量,量化电源结构演化对区间电价差的影响.
李威 , 李然 , 胡炎 , 王曦炜 , 熊康 . 计及碳成本的区域间电价差与跨区电力交易量评估模型[J]. 上海交通大学学报, 2024 , 58(12) : 1835 -1845 . DOI: 10.16183/j.cnki.jsjtu.2023.217
In the context of achieving the “dual carbon” goal, the task of carbon emission reduction in the power industry urgently needs to be completed. Cross-regional electricity trading can facilitate the remote consumption of surplus renewable resources and contribute to the low-carbon transformation of the power system. Due to the inherent differences in power generation structures across interconnected regions, the impact of carbon costs on the clearing electricity prices within regions varies, leading to dynamic price differences between regions, which, in turn, affects the outcomes of cross-regional electricity trading, and further exacerbates the differences in power generation structures, thereby impacting interval electricity price differences. To address these complexities, this paper proposes an assessment model which considers both carbon costs and interval electricity price differences in evaluating cross-regional electricity trading volumes. The model aims to establish a coherent relationship between interval price differences and cross-regional electricity trading by incorporating carbon costs into the power system production process. It uses the dynamic interval price difference as a signal to determine the trading volume between regions in the evaluation of cross-regional electricity trading volumes. In assessing interval price differences, the model updates the intra-region power generation structure based on unit revenue rates, and contrasts the price differences before and after these structural iterations. Taking the cross-regional electricity trading between two interconnected areas as an example, the results of the computational simulations demonstrate that the proposed model effectively evaluates the dynamic price differences between regions and cross-regional electricity trading volumes. Additionally, it quantifies the impact of power generation structure evolution on interval price differences.
[1] | 张金平, 汪宁渤, 黄蓉, 等. 高渗透率光伏参与电力系统调频研究综述[J]. 电力系统保护与控制, 2019, 47(15): 179-186. |
ZHANG Jinping, WANG Ningbo, HUANG Rong, et al. Survey on frequency regulation technology of power grid by high-penetration photovoltaic[J]. Power System Protection & Control, 2019, 47(15): 179-186. | |
[2] | 程鹏, 马静, 李庆, 等. 风电机组电网友好型控制技术要点及展望[J]. 中国电机工程学报, 2020, 40(2): 456-467. |
CHENG Peng, MA Jing, LI Qing, et al. A review on grid-friendly control technologies for wind power generators[J]. Proceedings of the CSEE, 2020, 40(2): 456-467. | |
[3] | 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259. |
LI Hui, LIU Dong, YAO Danyang. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259. | |
[4] | 刘昊, 郭烨, 孙宏斌. 中国跨区跨省电力交易综述及展望[J]. 电力系统自动化, 2022, 46(15): 187-199. |
LIU Hao, GUO Ye, SUN Hongbin. Review and prospect of inter-regional and inter-provincial power trading in China[J]. Automation of Electric Power Systems, 2022, 46(15): 187-199. | |
[5] | 包兴安. 全国碳市场运行1周年促进绿色低碳转型初见成效[N]. 证券日报,2022-07-14(A3). |
BAO Xing’an. The first anniversay of the operation of national carbon market has achieved initial sucess in green and low-carbon transformation[N]. Securities Daily, 2022-07-14 ( A3). | |
[6] | 康重庆, 杜尔顺, 郭鸿业, 等. 新型电力系统的六要素分析[J]. 电网技术, 2023, 47(5): 1741-1750. |
KANG Chongqing, DU Ershun, GUO Hongye, et al. Primary exploration of six essential factors in new power system[J]. Power System Technology, 2023, 47(5): 1741-1750. | |
[7] | 张鹏飞, 徐静怡, 郭巍, 等. 粤港澳大湾区电力系统低碳转型[J]. 上海交通大学学报, 2022, 56(3): 293-302. |
ZHANG Pengfei, XU Jingyi, GUO Wei, et al. Low-carbon transformation of the power system in the Guangdong-Hong Kong-Macao greater bay area[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 293-302. | |
[8] | 秦炎. 欧洲碳市场推动电力减排的作用机制分析[J]. 全球能源互联网, 2021, 4(1): 37-45. |
QIN Yan. Role of European carbon market in power sector decarbonization[J]. Journal of Global Energy Interconnection, 2021, 4(1): 37-45. | |
[9] | DECHEZLEPRêTRE A, NACHTIGALL D, VENMANS F. The joint impact of the European Union emissions trading system on carbon emissions and economic performance[J]. Journal of Environmental Economics & Management, 2023, 118: 102758. |
[10] | 张慧敏, 李晏, 冯天天, 等. 碳中和背景下跨省电力交易空间结构及影响因素研究[J]. 智慧电力, 2022, 50(11): 56-61. |
ZHANG Huimin, LI Yan, FENG Tiantian, et al. Spatial structure and influencing factors of inter-provincial power transaction under carbon neutralization[J]. Smart Power, 2022, 50(11): 56-61. | |
[11] | 张虹, 孟庆尧, 马鸿君, 等. 面向提升绿证需求的跨区互联系统经济低碳调度策略[J]. 电力系统自动化, 2022, 46(22): 51-61. |
ZHANG Hong, MENG Qingyao, MA Hongjun, et al. Economic and low-carbon dispatching strategy of cross-region interconnected system for promoting green certificate demand[J]. Automation of Electric Power Systems, 2022, 46(22): 51-61. | |
[12] | 赵宏兴, 肖建平, 乔中鹏, 等. 电碳耦合市场环境下电力系统运行模拟方法[J]. 电力建设, 2023, 44(7): 50-56. |
ZHAO Hongxing, XIAO Jianping, QIAO Zhongpeng, et al. Study on power system operation simulation method in electric-carbon coupling market environment[J]. Electric Power Construction, 2023, 44(7): 50-56. | |
[13] | 毕晨豪, 李志强. 基于电市场与碳市场耦合含储能的微电网电源规划[J]. 上海电力大学学报, 2023, 39(3): 244-251. |
BI Chenhao, LI Zhiqiang. Microgrid power capacity planning with energy storage based on coupling between electricity market and carbon market[J]. Journal of Shanghai University of Electric Power, 2023, 39(3): 244-251. | |
[14] | 靳冰洁, 李家兴, 彭虹桥, 等. 需求响应下计及电碳市场耦合的多元主体成本效益分析[J]. 电力建设, 2023, 44(2): 50-60. |
JIN Bingjie, LI Jiaxing, PENG Hongqiao, et al. Cost-benefit analysis of multiple entities under the coupling of electricity and carbon trading market considering demand response[J]. Electric Power Construction, 2023, 44(2): 50-60. | |
[15] | ZHANG W J, CHENG Y L, ZHANG Y, et al. Cooperative operation strategy of electricity-carbon market considering randomness and correlation of electricity-carbon price[C]// 2023 8th Asia Conference on Power and Electrical Engineering. Tianjin, China: IEEE, 2023: 1218-1223. |
[16] | 杨威, 龚学良, 曾智健, 等. 碳排放交易市场机制对电力市场的影响:基于碳价需求响应的电力市场用户行为分析[J]. 南方电网技术, 2022, 16(8): 59-67. |
YANG Wei, GONG Xueliang, ZENG Zhijian, et al. Impacts of ETS mechanism on electricity market: Behavior analysis of market customers based on carbon-oriented demand response[J]. Southern Power System Technology, 2022, 16(8): 59-67. | |
[17] | 李兴, 刘自敏, 杨丹, 等. 电力市场效率评估与碳市场价格设计: 基于电碳市场关联视角下的传导率估计[J]. 中国工业经济, 2022(1): 132-150. |
LI Xing, LIU Zimin, YANG Dan, et al. Power market efficiency evaluation and carbon market price design—Estimation of pass-through rate based on the perspective of power-carbon market correlation[J]. China Industrial Economics, 2022(1): 132-150. | |
[18] | 赵长红, 张明明, 吴建军, 等. 碳市场和电力市场耦合研究[J]. 中国环境管理, 2019, 11(4): 105-112. |
ZHAO Changhong, ZHANG Mingming, WU Jianjun, et al. The coupling study on carbon market and power market[J]. Chinese Journal of Environmental Management, 2019, 11(4): 105-112. | |
[19] | 舒印彪, 张丽英, 张运洲, 等. 我国电力碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23(6): 1-14. |
SHU Yinbiao, ZHANG Liying, ZHANG Yunzhou, et al. Carbon peak and carbon neutrality path for China’s power industry[J]. Strategic Study of CAE, 2021, 23(6): 1-14. | |
[20] | 张素芳, 吕书贺. 基于系统动力学方法的碳市场拍卖比例对我国电源结构的影响研究[J]. 华北电力大学学报(社会科学版), 2020(3): 16-25. |
ZHANG Sufang, LV Shuhe. The influence of different allowance allocation auction ratios on China’s power supply structure: A system dynamics approach[J]. Journal of North China Electric Power University (Social Sciences), 2020(3): 16-25. | |
[21] | 刘可真, 代莹皓, 赵庆丽, 等. 考虑碳-绿色证书交易机制的新能源跨省交易模型[J]. 电力系统及其自动化学报, 2023, 35(8): 9-19. |
LIU Kezhen, DAI Yinghao, ZHAO Qingli, et al. New energy interprovincial trading model considering carbon-green certificate trading mechanism[J]. Proceedings of the CSU-EPSA, 2023, 35(8): 9-19. | |
[22] | 吴鸿亮, 刘羽霄, 张宁, 等. 南方电网西电东送中的碳交易模型及其效益分析[J]. 电网技术, 2017, 41(3): 745-751. |
WU Hongliang, LIU Yuxiao, ZHANG Ning, et al. Carbon trading models and benefit analysis in CSG west-to-east power transmission[J]. Power System Technology, 2017, 41(3): 745-751. | |
[23] | SHI Y Y, WANG L, PAN L N, et al. Research on regional block load based on multienergy power dispatching model[C]// 2020 International Conference on Urban Engineering and Management Science. Zhuhai, China: IEEE, 2020: 268-273. |
[24] | 刘明涛, 谢俊, 张秋艳, 等. 碳交易环境下含风电电力系统短期生产模拟[J]. 上海交通大学学报, 2021, 55(12): 1598-1607. |
LIU Mingtao, XIE Jun, ZHANG Qiuyan, et al. Short-term production simulation of power system containing wind power under carbon trading environment[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1598-1607. | |
[25] | 张云. 国际碳排放交易与中国排放权出口规模管理: 基于MACCs的研究[D]. 上海: 华东师范大学, 2013. |
ZHANG Yun. International carbon emissions trading and China’s certified emission reductions export: A MACCs analysis[D]. Shanghai: East China Normal University, 2013. | |
[26] | DU L M, HANLEY A, WEI C. Estimating the marginal abatement cost curve of CO2 emissions in China: Provincial panel data analysis[J]. Energy Economics, 2015, 48: 217-229. |
[27] | 邵成成, 冯陈佳, 王雅楠, 等. 含大规模清洁能源电力系统的多时间尺度生产模拟[J]. 中国电机工程学报, 2020, 40(19): 6103-6113. |
SHAO Chengcheng, FENG Chenjia, WANG Yanan, et al. Multiple time-scale production simulation of power system with large-scale renewable energy[J]. Proceedings of the CSEE, 2020, 40(19): 6103-6113. | |
[28] | 叶晨, 牟玉亭, 王蓓蓓, 等. 考虑动态碳交易曲线的电-碳市场出清模型及节点边际电价构成机理分析[J]. 电网技术, 2023, 47(2): 613-624. |
YE Chen, MOU Yuting, WANG Beibei, et al. Mechanism of locational marginal prices and clearing model of electricity and carbon market considering dynamic carbon trading curve[J]. Power System Technology, 2023, 47(2): 613-624. | |
[29] | 王换换. 新能源发电成本对价格补贴的影响研究[D]. 西安: 西安石油大学, 2019. |
WANG Huanhuan. Research on the influence of new energy generation cost on price subsidy[D]. Xi’an: Xi’an Shiyou University, 2019. | |
[30] | 丁怡婷. 我国可再生能源发电装机容量超10亿千瓦[N]. 人民日报,2021-11-29(1). |
DING Yiting. China’s installed capacity of renewable energy generation exceeds 1 billion kilowatts[N]. People’s Daily, 2021-11-29( 1). | |
[31] | International Renewable Energy Agency. Renewable power generation costs in 2020[R]. Abu Dhabi, UAE: IRENA, 2021: 1-180. |
/
〈 |
|
〉 |