新型电力系统与综合能源

综合惯性控制下风力机惯性支撑能力分析及等效惯量评估

  • 周涛 ,
  • 黄菊 ,
  • 韩汝帅 ,
  • 胡秦然 ,
  • 权浩
展开
  • 1.南京理工大学 自动化学院,南京 210094
    2.东南大学 电气工程学院,南京 210096
周 涛(1991—),博士,讲师,主要研究方向为电力系统运行与控制、新型电力系统频率稳定.
胡秦然,副教授,博士生导师;E-mail:qhu@seu.edu.cn.

收稿日期: 2023-04-28

  修回日期: 2023-08-14

  录用日期: 2023-08-17

  网络出版日期: 2023-09-06

基金资助

江苏省自然科学基金青年项目(BK20220216);中央高校基本科研业务费专项资金资助(30922010709)

Inertial Support Capacity Analysis and Equivalent Inertia Estimation of Wind Turbines in Integrated Inertial Control

  • ZHOU Tao ,
  • HUANG Ju ,
  • HAN Rushuai ,
  • HU Qinran ,
  • QUAN Hao
Expand
  • 1. School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
    2. School of Electrical Engineering, Southeast University, Nanjing 210096, China

Received date: 2023-04-28

  Revised date: 2023-08-14

  Accepted date: 2023-08-17

  Online published: 2023-09-06

摘要

针对可再生能源高占比并网所引发的新型电力系统频率安全问题,风电机组多采用综合惯性控制为电力系统提供惯量及一次调频支撑.为更好地把握系统的惯量安全水平,保障电网频率稳定,首先对采用综合惯性控制的风电机组进行动态建模,根据风力机蕴含的动能及其对电网提供的频率支撑推导出风力机的有效惯量.然后,建立综合惯性控制下包含风力机的系统频率响应模型,得到风力机调频过程中有效惯性时间常数的解析式并进行惯性支撑能力分析.根据“等面积原理”推导出综合惯性控制下风力机参与调频过程的等效惯量评估方法,该方法能够对风力机提供的惯性支撑能力进行分析并给出量化结果.最后,通过算例分析验证了所提方法的有效性和可行性,并分析了不同因素对风力机等效惯量的影响.

本文引用格式

周涛 , 黄菊 , 韩汝帅 , 胡秦然 , 权浩 . 综合惯性控制下风力机惯性支撑能力分析及等效惯量评估[J]. 上海交通大学学报, 2024 , 58(12) : 1915 -1924 . DOI: 10.16183/j.cnki.jsjtu.2023.161

Abstract

In response to the new power system frequency safety issues caused by the high percentage of renewable energy sources connected to the grid, wind turbines mostly use integrated inertia control for the inertia and primary frequency regulation support provided by the power system. In order to better improve the inertia safety of the system and guarantee the grid frequency stability, dynamic modeling of wind turbines with integrated inertia control is conducted to derive the effective inertia of the wind turbine based on the kinetic energy contained in the wind turbine and the frequency support it provides to the grid. Then, a system frequency response model of the wind turbine in integrated inertia control is established, the analytical formula of the effective inertia time constant in the process of wind turbine frequency regulation is obtained, and the inertia support capability is analyzed. Based on the “equal area principle”, the equivalent inertia evaluation method of the wind turbine in integrated inertia control is derived, which can analyze the inertial support capacity provided by the wind turbine and give quantitative results. Finally, the validity and feasibility of the proposed method is verified in a case study, and the impact of different factors on the equivalent inertia of the wind turbine is analyzed.

参考文献

[1] 鲁宗相, 姜继恒, 乔颖, 等. 新型电力系统广义惯量分析与优化研究综述[J]. 中国电机工程学报, 2023, 43(5): 1754-1776.
  LU Zongxiang, JIANG Jiheng, QIAO Ying, et al. A review on generalized inertia analysis and optimization of new power systems[J]. Proceedings of the CSEE, 2023, 43(5): 1754-1776.
[2] 易佩, 景志滨, 徐飞, 等. 考虑频率安全约束的电力系统临界惯量计算[J]. 清华大学学报(自然科学版), 2022, 62(10): 1721-1729.
  YI Pei, JING Zhibin, XU Fei, et al. Calculation of the critical inertia of apower system considering frequency security constraints[J]. Journal of Tsinghua University (Science & Technology), 2022, 62(10): 1721-1729.
[3] 周涛, 陈中, 王毅, 等. 计及异步电机频率响应的电力系统最低惯量评估[J]. 电力系统保护与控制, 2022, 50(20): 22-31.
  ZHOU Tao, CHEN Zhong, WANG Yi, et al. Evaluation of minimum inertia in power systems considering frequency response of induction machines[J]. Power System Protection and Control, 2022, 50(20): 22-31.
[4] 黄强, 郭怿, 江建华, 等. “双碳” 目标下中国清洁电力发展路径[J]. 上海交通大学学报, 2021, 55(12): 1499-1509.
  HUANG Qiang, GUO Yi, JIANG Jianhua, et al. Development pathway of China’s clean electricity under carbon peaking and carbon neutrality goals[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1499-1509.
[5] 武钢. 风电发展助力实现“双碳” 目标[J]. 中国电力企业管理, 2022(31): 10-12.
  WU Gang. Wind power development helps to achieve the goal of “double carbon”[J]. China Power Enterprise Management, 2022(31): 10-12.
[6] ZWARTEVEEN J W, ANGUS A. Forecasting the probability of commercial wind power development in lagging countries[J]. Cleaner Production Letters, 2022, 2: 100006.
[7] 颜全椿, 顾文, 范立新, 等. 储能协助风电机组参与电网调频控制策略研究[J]. 现代电力, 2022, 39(5): 537-546.
  YAN Quanchun, GU Wen, FAN Lixin, et al. Energy storage assists wind turbines to participate in grid frequency regulation control strategy research[J]. Modern Electric Power, 2022, 39(5): 537-546.
[8] 刘文彬, 柳思岐, 杨子力, 等. 储能对含高风电渗透率系统暂态稳定性的影响[J]. 水电能源科学, 2019, 37(10): 199-203.
  LIU Wenbin, LIU Siqi, YANG Zili, et al. Effects of energy storage on transient stability of high proportion of wind energy grid-connected system[J]. Water Resources & Power, 2019, 37(10): 199-203.
[9] AKBARI M, MADANI S M. Analytical evaluation of control strategies for participation of doubly fed induction generator-based wind farms in power system short-term frequency regulation[J]. IET Renewable Power Generation, 2014, 8(3): 324-333.
[10] ANDERSON P M, MIRHEYDAR M. A low-order system frequency response model[J]. IEEE Transactions on Power Systems, 1990, 5(3): 720-729.
[11] 徐筱倩, 黄林彬, 汪震, 等. 双馈风电机组虚拟惯量控制对电力系统机电振荡的影响分析[J]. 电力系统自动化, 2019, 43(12): 11-17.
  XU Xiaoqian, HUANG Linbin, WANG Zhen, et al. Analysis on impact of virtual inertia control of DFIG-based wind turbine on electromechanical oscillation of power system[J]. Automation of Electric Power Systems, 2019, 43(12): 11-17.
[12] 李世春, 邓长虹, 龙志君, 等. 风电场等效虚拟惯性时间常数计算[J]. 电力系统自动化, 2016, 40(7): 22-29.
  LI Shichun, DENG Changhong, LONG Zhijun, et al. Calculation of equivalent virtual inertial time constant of wind farm[J]. Automation of Electric Power Systems, 2016, 40(7): 22-29.
[13] 邢其鹏. 双馈风电机组等效惯量响应特性分析及系统暂态稳定判别[D]. 北京: 华北电力大学, 2022.
  XING Qipeng. Analysis of equivalent inertia response characteristics of doubly-fed fan and identification of system transient stability[D]. Beijing: North China Electric Power University, 2022.
[14] 李世春, 宋秋爽, 薛臻瑶, 等. 含风电虚拟惯性响应的新能源电力系统惯量估计[J]. 电力工程技术, 2023, 42(2): 84-93.
  LI Shichun, SONG Qiushuang, XUE Zhenyao, et al. Inertia estimation of new energy power system with virtual inertia response of wind power[J]. Electric Power Engineering Technology, 2023, 42(2): 84-93.
[15] 安军, 盛帅, 周毅博, 等. 基于量测数据的风电场等效虚拟惯量评估方法[J]. 电网技术, 2023, 47(5): 1819-1829.
  AN Jun, SHENG Shuai, ZHOU Yibo, et al. Evaluation of equivalent virtual inertia of wind farm based on measured data[J]. Power System Technology, 2023, 47(5): 1819-1829.
[16] HE W, YUAN X M, HU J B. Inertia provision and estimation of PLL-based DFIG wind turbines[J]. IEEE Transactions on Power Systems, 2017, 32(1): 510-521.
[17] 刘新宇, 逯芯妍, 曾龙, 等. 双馈风电场并网抑制频率振荡控制策略[J]. 上海交通大学学报, 2022, 56(3): 303-311.
  LIU Xinyu, LU Xinyan, ZENG Long, et al. Control strategies for suppressing frequency oscillation of doubly-fed wind farms connected to grid[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 303-311.
[18] 高景德, 王祥珩, 李发海. 交流电机及其系统的分析[M]. 第2版. 北京: 清华大学出版社, 2005.
  GAO Jingde, WANG Xiangheng, LI Fahai. Analysis of AC motor and its system[M]. 2nd ed. Beijing: Tsinghua University Press, 2005.
[19] 袁佳豪, 王维庆, 王海云, 等. 双馈风电机组变系数综合惯性策略优化控制[J]. 现代电子技术, 2022, 45(21): 97-102.
  YUAN Jiahao, WANG Weiqing, WANG Haiyun, et al. Comprehensive inertia strategy optimization control of variation factor of double-fed wind turbine generator system[J]. Modern Electronics Technique, 2022, 45(21): 97-102.
[20] MURRELL W, RAN L, WANG J H. Modelling UK power system frequency response with increasing wind penetration[C]// 2014 IEEE Innovative Smart Grid Technologies-Asia. Kuala Lumpur, Malaysia: IEEE, 2014: 1-6.
[21] 彭海涛, 何山, 袁至, 等. 基于改进转子转速和桨距角协调控制的变速风电机组一次调频策略[J]. 电力自动化设备, 2023, 43(9): 87-94.
  PENG Haitao, HE Shan, YUAN Zhi, et al. Primary frequency regulation strategy for variable-speed wind turbines based on improved coordinated control of rotor speed and pitch angle[J]. Electric Power Automation Equipment, 2023, 43(9): 87-94.
[22] 沈阳武, 宋兴荣, 罗紫韧, 等. 基于模型预测控制的分布式储能型风力发电场惯性控制策略[J]. 上海交通大学学报, 2022, 56(10): 1285-1293.
  SHEN Yangwu, SONG Xingrong, LUO Ziren, et al. Inertial control strategy for wind farm with distributed energy storage system based on model predictive control[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1285-1293.
文章导航

/