新型电力系统与综合能源

基于有源电容的直流母线电压振荡抑制器及其控制方法

  • 杨继沛 ,
  • 杨苓 ,
  • 魏茂华
展开
  • 广东工业大学 自动化学院,广州 510006
杨继沛(2002—),本科生,从事分布式发电及直流微电网控制技术研究.
杨 苓,讲师;E-mail:yangling_1992@gdut.edu.cn.

收稿日期: 2023-07-18

  修回日期: 2023-08-17

  录用日期: 2023-08-28

  网络出版日期: 2023-09-07

基金资助

国家自然科学基金(52107185);广东省自然科学基金(2023A1515010061)

DC-Bus Voltage Oscillation Suppressor Based on Active Capacitor and Its Control Method

  • YANG Jipei ,
  • YANG Ling ,
  • WEI Maohua
Expand
  • School of Automation, Guangdong University of Technology, Guangzhou 510006, China

Received date: 2023-07-18

  Revised date: 2023-08-17

  Accepted date: 2023-08-28

  Online published: 2023-09-07

摘要

直流微电网中接入的恒功率负载降低了系统的有效阻尼,导致直流母线上产生高频电压振荡,威胁系统的安全稳定运行.为此,提出一种基于有源电容的直流母线电压振荡抑制器及其控制方法,将振荡抑制器与直流母线并联,令其直接与直流母线进行能量交互,振荡抑制器中的储能电容可以有效存储直流母线上伴随电压振荡产生的瞬变能量,从而降低电压振荡幅值,提高母线电压的稳定性.振荡抑制器中电源的电压可跟随直流母线电压进行自适应调节,面对系统中负荷变化,振荡抑制器可以保持稳定工作,具有即插即用、适用性强、控制灵活的优点.此外,通过分析振荡抑制器的工作模态和机理,建立其小信号模型,分析控制器参数对振荡抑制器稳定性和动态特性的影响,得出控制器参数优化方案.最后通过实验验证了上述振荡抑制器的有效性.

本文引用格式

杨继沛 , 杨苓 , 魏茂华 . 基于有源电容的直流母线电压振荡抑制器及其控制方法[J]. 上海交通大学学报, 2025 , 59(3) : 303 -312 . DOI: 10.16183/j.cnki.jsjtu.2023.327

Abstract

The constant power load (CPL) in a DC microgrid can reduce the effective damping of the system, resulting in high frequency voltage oscillations on the DC bus, which threatens the safe and stable operation of the system. To address this issue, this paper proposes a DC-bus voltage oscillation suppressor based on an active capacitor and its control method. The oscillation suppressor is connected in parallel to the DC bus, enabling direct interaction with the DC bus. The energy storage capacitor in the oscillator suppressor effectively stores the transient energy generated by voltage oscillations, thereby reducing the amplitude of voltage oscillation and improving the voltage stability of the bus. The voltage of the power supply in the oscillation suppressor adapts to the voltage of the DC bus, allowing for stable operation in the face of load changes in the system. The design offers advantages such as plug-and-play functionality, strong applicability, and flexible control. In addition, by analyzing the operating mode and mechanism of the oscillation suppressor, a small signal model is established, and the influence of controller parameters on the stability and dynamic performance of the suppressor is analyzed, based on which the controller parameter optimization scheme is proposed. Finally, the effectiveness of the oscillatory suppressor is validated through the experimental results.

参考文献

[1] 张珍睿, 刘彦呈, 杨鹏明, 等. 直流供电下的永磁同步电机驱动系统母线电压振荡抑制策略[J]. 电工技术学报, 2022, 37(12): 2982-2991.
  ZHANG Zhenrui, LIU Yancheng, YANG Pengming, et al. Suppression strategy of bus voltage oscillation for PMSM in DC power supply drive system[J]. Transactions of China Electrotechnical Society, 2022, 37(12): 2982-2991.
[2] 朱晓荣, 李铮. 多换流器直流微电网稳定性分析[J]. 电网技术, 2021, 45(4): 1400-1410.
  ZHU Xiaorong, LI Zheng. Stability analysis of multi converter DC microgrid[J]. Power System Technology, 2021, 45(4): 1400-1410.
[3] 王昊, 黄文焘, 邰能灵, 等. 直流配网多滤波器交互影响机理分析[J]. 上海交通大学学报, 2023, 57(4): 393-402.
  WANG Hao, HUANG Wentao, TAI Nengling, et al. Interaction mechanism for multiple active power filters in DC distribution networks[J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 393-402.
[4] 王一凡, 赵成勇, 郭春义. 双馈风电场孤岛经模块化多电平换流器直流输电并网系统小信号稳定性分析与振荡抑制方法[J]. 电工技术学报, 2019, 34(10): 2116-2129.
  WANG Yifan, ZHAO Chengyong, GUO Chunyi. Small signal stability and oscillation suppression method for islanded double fed induction generator-based wind farm integrated by modular multilevel converter based HVDC system[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2116-2129.
[5] 郭力, 冯怿彬, 李霞林, 等. 直流微电网稳定性分析及阻尼控制方法研究[J]. 中国电机工程学报, 2016, 36(4): 927-936.
  GUO Li, FENG Yibin, LI Xialin, et al. Stability analysis and research of active damping method for DC microgrids[J]. Proceedings of the CSEE, 2016, 36(4): 927-936.
[6] ZHAO W, CHEN E D, SUN X F, et al. A 6n-order low-frequency mathematical model of multiple inverters based microgrid[J]. CES Transactions on Electrical Machines and Systems, 2018, 2(3): 264-275.
[7] 钟志宏, 方晓春, 林飞, 等. MTPA控制下逆变器-IPMSM系统直流侧电压稳定性研究[J]. 电工技术学报, 2017, 32(21): 34-43.
  ZHONG Zhihong, FANG Xiaochun, LIN Fei, et al. DC voltage stability studies with IPMSM system under the control of MTPA[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 34-43.
[8] LI C, YANG Y Q, DRAGICEVIC T, et al. A new perspective for relating virtual inertia with wideband oscillation of voltage in low-inertia DC microgrid[J]. IEEE Transactions on Industrial Electronics, 2022, 69(7): 7029-7039.
[9] 王成山, 李微, 王议锋, 等. 直流微电网母线电压波动分类及抑制方法综述[J]. 中国电机工程学报, 2017, 37(1): 84-98.
  WANG Chengshan, LI Wei, WANG Yifeng, et al. DC bus voltage fluctuation classification and restraint methods review for DC microgrid[J]. Proceedings of the CSEE, 2017, 37(1): 84-98.
[10] ZHU X R, MENG F Q, XIE Z Y, et al. An inertia and damping control method of DC-DC converter in DC microgrids[J]. IEEE Transactions on Energy Conversion, 2020, 35(2): 799-807.
[11] GUI Y H, HAN R K, GUERRERO J M, et al. Large-signal stability improvement of DC-DC converters in DC microgrid[J]. IEEE Transactions on Energy Conversion, 2021, 36(3): 2534-2544.
[12] LU X N, SUN K, GUERRERO J M, et al. Stability enhancement based on virtual impedance for DC microgrids with constant power loads[J]. IEEE Transactions on Smart Grid, 2015, 6(6): 2770-2783.
[13] XU Q W, VAFAMAND N, CHEN L L, et al. Review on advanced control technologies for bidirectional DC/DC converters in DC microgrids[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(2): 1205-1221.
[14] LI X K, JIANG W T, WANG J J, et al. An autonomous control scheme of global smooth transitions for bidirectional DC-DC converter in DC microgrid[J]. IEEE Transactions on Energy Conversion, 2021, 36(2): 950-960.
[15] 米阳, 张浩杰, 钱翌明, 等. 基于扩散算法的无下垂分布式储能控制[J]. 上海交通大学学报, 2024, 58(6): 836-845.
  MI Yang, ZHANG Haojie, QIAN Yiming, et al. Droop-free distributed energy storage control based on diffusion algorithm[J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 836-845.
[16] 杜韦静, 张军明, 钱照明. Buck变流器级联系统直流母线电压补偿控制策略[J]. 电工技术学报, 2015, 30(1): 135-142.
  DU Weijing, ZHANG Junming, QIAN Zhaoming. Compensation methodology for DC bus voltage of cascaded system formed by buck converters[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 135-142.
[17] 张欣, 阮新波. 用于提高级联型电源系统稳定性的自适应有源电容变换器[J]. 电工技术学报, 2012, 27(2): 23-32.
  ZHANG Xin, RUAN Xinbo. Adaptive active capacitor converter for improving the stability of cascaded DC power supply system[J]. Transactions of China Electrotechnical Society, 2012, 27(2): 23-32.
[18] LI S N, LEE A T L, TAN S C, et al. Plug-and-play voltage ripple mitigator for DC links in hybrid AC-DC power grids with local bus-voltage control[J]. IEEE Transactions on Industrial Electronics, 2018, 65(1): 687-698.
[19] HAJIHOSSEINI M, ANDALIBI M, GHEISARNEJAD M, et al. DC/DC power converter control-based deep machine learning techniques: Real-time implementation[J]. IEEE Transactions on Power Electronics, 2020, 35(10): 9971-9977.
[20] HOSSEINIPOUR A, HOJABRI H. Small-signal stability analysis and active damping control of DC microgrids integrated with distributed electric springs[J]. IEEE Transactions on Smart Grid, 2020, 11(5): 3737-3747.
[21] LUCAS-MARCILLO K E, GUINGLA D A P, BARRA W, et al. Novel robust methodology for controller design aiming to ensure DC microgrid stability under CPL power variation[J]. IEEE Access, 2019, 7: 64206-64222.
文章导航

/