收稿日期: 2023-03-09
修回日期: 2023-07-12
录用日期: 2023-07-18
网络出版日期: 2023-08-01
基金资助
国家自然科学基金资助项目(22075262)
Effect of Sediment Porosity on Electrochemical Performance of Marine Sediment Microbial Fuel Cells and Analysis of Organic Matter Diffusion
Received date: 2023-03-09
Revised date: 2023-07-12
Accepted date: 2023-07-18
Online published: 2023-08-01
海底沉积物微生物燃料电池(MSMFC)在长期运行过程中,海泥孔隙率影响阳极表面水平方向有机质扩散,进而影响阳极电化学性能和电池功率输出.通过人工调节孔隙率在实验室模拟并研究孔隙率对MSMFC的影响,建立孔隙率与MSMFC产电量和水平扩散系数之间定量关系式.结果表明:随着孔隙率升高,阳极动力学活性先降低后升高,最高动力学活性是最低动力学活性的3.85倍;电池最大输出功率密度在孔隙率为45.2% 时,达到最大值206.8 mW/m2.随着孔隙率的增大,有机质水平扩散系数升高,并与MSMFC产电量存在线性关系.当孔隙率为45.2%时,扩散系数为0.48 m2/s,MSMFC产电量达到804.04 J.该研究结果将为MSMFC在不同海域布放选址、阳极结构设计及电池长期产电运行提供技术支撑.
李洋 , 刘志 , 宰学荣 , 黄翔 , 陈岩 , 曹亚俐 , 张怀静 , 付玉彬 . 海泥孔隙率对海底微生物燃料电池电化学性能影响及有机质扩散分析[J]. 上海交通大学学报, 2024 , 58(10) : 1567 -1574 . DOI: 10.16183/j.cnki.jsjtu.2023.081
During the long-term operation of marine sediment microbial fuel cell (MSMFC) on the ocean floor, the sediment porosity affects the horizontal diffusion coefficient of organic matter near the anode,which finally influences the anodic electrochemical performance and the power output of cells. In this paper, the sediment with different sediment porosities is established in lab by artificially adjusting sediment porosity to investigate its influence on the performance of MSMFC, so as to creatively build the mathematical relationship between the energy production of MSMFC and the horizontal diffusion coefficient. With the increase of sediment porosity, the anode kinetic activity decreases and then increases, the highest kinetic activity is 3.85 times higher than the lowest kinetic activity. When the sediment porosity is 45.2%, the maximum power output reaches 206.8 mW/m2. Horizontal diffusion coefficient of organic increases with an increase in sediment porosity, and it has a linear relationship with the energy production of MSMFC. When the sediment porosity is 45.2%, the horizontal diffusion coefficient is 0.48 m2/s, and the energy production of MSMFC reaches 804.04 J. These results render a technological base for the site choice of MSMFC deploying in different marine sediments, anode design and battery operation for long term.
[1] | GUPTA S, PATRO A, MITTAL Y, et al. The race between classical microbial fuel cells, sediment-microbial fuel cells, plant-microbial fuel cells, and constructed wetlands-microbial fuel cells: Applications and technology readiness level[J]. Science of the Total Environment, 2023, 879: 162757. |
[2] | OLIAS L G, OTERO A R, CAMERON P J, et al. A soil microbial fuel cell-based biosensor for dissolved oxygen monitoring in water[J]. Electrochimica Acta, 2020, 362: 137108. |
[3] | 侯路遥, 周长阳, 陈岩, 等. 腐殖酸和木质素磺酸钠对海底沉积物微生物燃料电池性能影响的比较研究[J]. 中国海洋大学学报(自然科学版), 2022, 52 (Sup.1): 36-41. |
HOU Luyao, ZHOU Changyang, CHEN Yan, et al. Comparative study of the effects humic acid and sodium lignosulfonate on the performance of marine sediments microbial fuel cells[J]. Periodical of Ocean University of China, 2022, 52 (Sup.1): 36-41. | |
[4] | MARMONIER P, FONTVIEILLE D, GIBERT J, et al. Distribution of dissolved organic carbon and bacteria at the interface between the Rh?ne River and its alluvial aquifer[J]. Journal of the North American Benthological Society, 1995, 14(3):382-392. |
[5] | GóMEZ-LETONA M, SEBASTIáN M, BA?OS I, et al. The importance of the dissolved organic matter pool for the carbon sequestration potential of artificial upwelling[J]. Frontiers in Marine Science, 2022, 9: 969714. |
[6] | 张明宇, 常鑫, 胡利民, 等. 东海内陆架有机碳的源-汇过程及其沉积记录[J]. 沉积学报, 2021, 39(3): 593-609. |
ZHANG Mingyu, CHANG Xin, HU Limin, et al. Source-to-sink process of organic carbon on the inner shelf of the East China Sea and its sedimentary records[J]. Acta Sedimentologica Sinica, 2021, 39(3): 593-609. | |
[7] | PUSHKAR P, KUMAR MUNGRAY A. Electrochemical evaluation of lab-scale chamber benthic microbial fuel cell[J]. Sustainable Energy Technologies & Assessments, 2021, 48: 101655. |
[8] | DZIEGIELOWSKI J, METCALFE B, DI LORENZO M. Towards effective energy harvesting from stacks of soil microbial fuel cells[J]. Journal of Power Sources, 2021, 515: 230591. |
[9] | CHI J L, FAN Y K, WANG L J, et al. Retention of soil organic matter by occlusion within soil minerals[J]. Reviews in Environmental Science & Bio/Technology, 2022, 21(3): 727-746. |
[10] | 杨辰, 颜国正, 周泽润, 等. 人造肛门括约肌经皮无线供能系统安全性及相容性分析[J]. 上海交通大学学报, 2021, 55(9): 1151-1157. |
YANG Chen, YAN Guozheng, ZHOU Zerun, et al. Biocompatibility and biosafety analysis of transcutaneous energy transfer system of artificial anal sphincter[J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1151-1157. | |
[11] | 马一宁, 施润, 张铁锐. 三相界面电催化二氧化碳还原研究进展[J]. 化学学报, 2021, 79(4): 369-377. |
MA Yining, SHI Run, ZHANG Tierui. Research progress on triphase interface electrocatalytic carbon dioxide reduction[J]. Acta Chimica Sinica, 2021, 79(4): 369-377. | |
[12] | YU B, FENG L, HE Y L, et al. Effects of anode materials on the performance and anode microbial community of soil microbial fuel cell[J]. Journal of Hazardous Materials, 2021, 401: 123394. |
[13] | CHRISTOV I C, STONE H A. Non-Fickian macroscopic model of axial diffusion of granular materials in a long cylindrical tumbler[J]. Mechanics Research Communications, 2023, 129: 104100. |
[14] | LIU S H, SU Y H, CHEN C C, et al. Simultaneous enhancement of copper removal and power production using a sediment microbial fuel cell with oxygen separation membranes[J]. Environmental Technology & Innovation, 2022, 26: 102369. |
[15] | CASULA E, MOLOGNONI D, BORRàS E, et al. 3D modelling of bioelectrochemical systems with brush anodes under fed-batch and flow conditions[J]. Journal of Power Sources, 2021, 487: 229432. |
[16] | RABAEY K. Bioelectrochemical systems: From extracellular electron transfer to biotechnological application[M]. London; New York: IWA Publishing, 2010. |
[17] | CASULA E, KIM B, CHESSON H, et al. Modelling the influence of soil properties on performance and bioremediation ability of a pile of soil microbial fuel cells[J]. Electrochimica Acta, 2021, 368: 137568. |
/
〈 |
|
〉 |