新型电力系统与综合能源

适用于频率和电压动态分析的构网型新能源场站聚合建模

  • 葛琛琛 ,
  • 陈俊儒 ,
  • 徐森 ,
  • 常喜强 ,
  • 毛善祥 ,
  • 朱荣伍
展开
  • 1.新疆大学 电气工程学院,乌鲁木齐 830047
    2.国网新疆电力有限公司,乌鲁木齐 830011
    3.哈尔滨工业大学(深圳) 机电与自动化工程学院,广东 深圳 518000
葛琛琛(1997—),博士生,从事电力系统建模与仿真技术研究.
陈俊儒,副教授,博士生导师;E-mail: junru.chen@xju.edu.cn.

收稿日期: 2023-02-22

  修回日期: 2023-07-14

  录用日期: 2023-07-18

  网络出版日期: 2023-08-01

基金资助

新疆维吾尔自治区科技厅重大科技专项项目(2022A01004-1)

Aggregation Modelling of Grid-Forming Renewable Power Plant for Frequency and Voltage Dynamic Analysis

  • GE Chenchen ,
  • CHEN Junru ,
  • XU Sen ,
  • CHANG Xiqiang ,
  • MAO Shanxiang ,
  • ZHU Rongwu
Expand
  • 1. School of Electrical Engineering, Xinjiang University, Urumqi 830047, China
    2. State Grid Xinjiang Electric Power Co., Ltd., Urumqi 830011, China
    3. School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, Guangdong, China

Received date: 2023-02-22

  Revised date: 2023-07-14

  Accepted date: 2023-07-18

  Online published: 2023-08-01

摘要

构网型新能源场站可模拟传统火力发电厂相关特性,具有主动支撑电网频率和电压的功能.提出一种适用于新型电力系统频率和电压稳定性分析的构网型新能源场站聚合模型,并分析场站整体运行特性,提出聚合模型参数识别与选取方法.所提聚合模型能够准确反映新能源场站与电网交互下的动态过程,并保障了较快的仿真速率.与MATLAB/Simulink中构网型新能源场站电磁暂态全拓扑模型进行比较,验证了所提聚合模型的有效性.基于IEEE 39母线系统的案例分析验证了所提聚合模型在电力系统频率和电压稳定性仿真分析中的准确性和快速性.

本文引用格式

葛琛琛 , 陈俊儒 , 徐森 , 常喜强 , 毛善祥 , 朱荣伍 . 适用于频率和电压动态分析的构网型新能源场站聚合建模[J]. 上海交通大学学报, 2024 , 58(10) : 1544 -1553 . DOI: 10.16183/j.cnki.jsjtu.2023.061

Abstract

Renewable power plant based on the grid-forming converter has a similar performance with the traditional thermal power plant on the function of active support for the frequency and voltage in the power system. An aggregation model is proposed for the frequency and voltage stability analysis of new power system, the overall operation characteristics of the plant are analyzed, and a method for identifying and selecting the parameters of the aggregation model is proposed. The proposed aggregation model can accurately reflect the dynamic process of the interaction between the renewable power plant and the grid, and ensure a quick simulation rate. In comparison with the electromagnetic transient model for grid-forming renewable power plant, the effectiveness of the proposed aggregation model is verified in MATLAB/Simulink. The accuracy and rapidity of the proposed aggregation model is verified in the frequency and voltage stability simulation analysis of power system based on the case study in the IEEE 39 bus system.

参考文献

[1] 张硕, 李薇, 李英姿, 等. 面向新型电力系统的可再生能源绿色电力证书差异化配置模型[J]. 上海交通大学学报, 2022, 56(12): 1561-1571.
  ZHANG Shuo, LI Wei, LI Yingzi, et al. Differentiated allocation model of renewable energy green certificates for new-type power system[J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1561-1571.
[2] 刘钊汛, 秦亮, 杨诗琦, 等. 面向新型电力系统的电力电子变流器虚拟同步控制方法评述[J]. 电网技术, 2023, 47(1): 1-15.
  LIU Zhaoxun, QIN Liang, YANG Shiqi, et al. Review on virtual synchronous generator control method of power electronic converter for new power system[J]. Power System Technology, 2023, 47(1): 1-15.
[3] 许诘翊, 刘威, 刘树, 等. 电力系统变流器构网控制技术的现状与发展趋势[J]. 电网技术, 2022, 46(9): 3586-3594.
  XU Jieyi, LIU Wei, LIU Shu, et al. Current state and development trends of power system converter grid-forming control technology[J]. Power System Technology, 2022, 46(9): 3586-3594.
[4] 邓小宇, 刘牧阳, 常喜强, 等. 新型电力系统点对网惯性支撑能力在线监测方法[J/OL]. 上海交通大学学报. https://doi.org/10.16183/j.cnki.jsjtu.2023.029.
  DENG Xiaoyu, LIU Muyang, CHANG Xiqiang, et al. On-line estimation method of the inertial support capacity of point-to-grid in power system[J/OL]. Journal of Shanghai Jiao Tong University. https://doi.org/10.16183/j.cnki.jsjtu.2023.029.
[5] 邢东峰, 田铭兴. 虚拟同步发电机下垂特性与控制模型阻尼系数的关系[J]. 兰州交通大学学报, 2022, 41(2): 71-78.
  XING Dongfeng, TIAN Mingxing. Relationship between droop characteristics and damping coefficient of virtual synchronous generators[J]. Journal of Lanzhou Jiaotong University, 2022, 41(2): 71-78.
[6] 杨银国, 袁枭添, 陆秋瑜, 等. 考虑切换动态的功率同步控制单台构网型换流器暂态稳定性分析[J]. 电网技术, 2023, 47(10): 4005-4016.
  YANG Yinguo, YUAN Xiaotian, LU Qiuyu, et al. Transient stability analysis of grid-forming converter with power synchronization control considering switching dynamics[J]. Power System Technology, 2023, 47(10): 4005-4016.
[7] SONAWANE A J, UMARIKAR A C. Three-phase single-stage photovoltaic system with synchronverter control: Power system simulation studies[J]. IEEE Access, 2022, 10: 23408-23424.
[8] POLA S, AZZOUZ M A. Optimal protection coordination of active distribution networks with synchronverters[J]. IEEE Access, 2022, 10: 75105-75116.
[9] 钟庆昌. 虚拟同步机与自主电力系统[J]. 中国电机工程学报, 2017, 37(2): 336-348.
  ZHONG Qingchang. Virtual synchronous machine and autonomous power system[J]. Proceedings of the CSEE, 2017, 37(2): 336-348.
[10] ZHENG T W, CHEN L J, GUO Y, et al. Comprehensive control strategy of virtual synchronous generator under unbalanced voltage conditions[J]. IET Generation, Transmission & Distribution, 2018, 12(7): 1621-1630.
[11] CHEN J R, O’DONNELL T. Parameter constraints for virtual synchronous generator considering stability[J]. IEEE Transactions on Power Systems, 2019, 34(3): 2479-2481.
[12] FAN B, WANG X F. Equivalent circuit model of grid-forming converters with circular current limiter for transient stability analysis[J]. IEEE Transactions on Power Systems, 2022, 37(4): 3141-3144.
[13] CHEN J R, O’DONNELL T. Analysis of virtual synchronous generator control and its response based on transfer functions[J]. IET Power Electronics, 2019, 12(11): 2965-2977.
[14] 孙大卫, 刘辉, 吴林林, 等. 虚拟同步发电机对低频振荡的影响建模与特性分析[J]. 电力系统自动化, 2020, 44(24): 134-144.
  SUN Dawei, LIU Hui, WU Linlin, et al. Modeling and characteristic analysis on influence of virtual synchronous generator on low-frequency oscillation[J]. Automation of Electric Power Systems, 2020, 44(24): 134-144.
[15] BARUWA M, FAZELI M. Impact of virtual synchronous machines on low-frequency oscillations in power systems[J]. IEEE Transactions on Power Systems, 2021, 36(3): 1934-1946.
[16] CHEN M, ZHOU D, BLAABJERG F. Active power oscillation damping based on acceleration control in paralleled virtual synchronous generators system[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 9501-9510.
[17] GONZáLEZ-CAJIGAS A, ROLDáN-PéREZ J, BUENO E J. Design and analysis of parallel-connected grid-forming virtual synchronous machines for island and grid-connected applications[J]. IEEE Transactions on Power Electronics, 2022, 37(5): 5107-5121.
[18] 袁敞, 王俊杰, 胡嘉琦, 等. 平衡频率与功率振荡的虚拟同步机惯量阻尼参数优化控制[J]. 电力科学与技术学报, 2023: 1-10.
  YUAN Chang, WANG Junjie, HU Jiaqi, et al. Optimal control of inertia damping parameters of virtual synchronous machine to balance frequency and power oscillation[J]. Journal of Electric Power Science & Technology, 2023: 1-10.
[19] 余威, 杨欢红, 焦伟, 等. 基于优劣解距离算法的光储配电网自适应虚拟惯性控制策略[J]. 上海交通大学学报, 2022, 56(10): 1317-1324.
  YU Wei, YANG Huanhong, JIAO Wei, et al. Adaptive virtual inertial control strategy of optical storage and distribution network based on TOPSIS algorithm[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1317-1324.
[20] 李美依, 黄文焘, 邰能灵, 等. 频率扰动下虚拟同步电机控制型分布式电源自适应惯性控制策略[J]. 电网技术, 2020, 44(4): 1525-1533.
  LI Meiyi, HUANG Wentao, TAI Nengling, et al. Adaptive inertial control strategy of distributed power supply controlled by virtual synchronous generators under frequency disturbance[J]. Power System Technology, 2020, 44(4): 1525-1533.
[21] SHI Q X, LI F X, CUI H. Analytical method to aggregate multi-machine SFR model with applications in power system dynamic studies[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6355-6367.
[22] HUANG H, JU P, JIN Y, et al. Generic system frequency response model for power grids with different generations[J]. IEEE Access, 2020, 8: 14314-14321.
[23] 古庭赟, 杨骐嘉, 林呈辉, 等. 基于单机等值与选择模态分析的风电场等值建模方法[J]. 电力系统保护与控制, 2020, 48(1): 102-111.
  GU Tingyun, YANG Qijia, LIN Chenghui, et al. A wind farm equivalent modeling method based on single-machine equivalent modeling and selection modal analysis[J]. Power System Protection & Control, 2020, 48(1): 102-111.
[24] 何君毅, 周瑀涵, 王康, 等. 主导模态保持的风电场站自适应等值方法[J]. 电力系统自动化, 2021, 45(11): 28-36.
  HE Junyi, ZHOU Yuhan, WANG Kang, et al. Self-adaptive equivalence method for wind farm with maintained dominant mode[J]. Automation of Electric Power Systems, 2021, 45(11): 28-36.
[25] 潘学萍, 戚相威, 梁伟, 等. 综合模型聚合和参数辨识的风电场多机等值及参数整体辨识[J]. 电力自动化设备, 2022, 42(1): 124-132.
  PAN Xueping, QI Xiangwei, LIANG Wei, et al. Multi-machine equivalence and global identification of wind farms by combining model aggregation and parameter estimation[J]. Electric Power Automation Equipment, 2022, 42(1): 124-132.
[26] TAUL M G, WANG X F, DAVARI P, et al. Reduced-order and aggregated modeling of large-signal synchronization stability for multiconverter systems[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2020, 9(3): 3150-3165.
[27] CHEN J R, LIU M Y, MILANO F. Aggregated model of virtual power plants for transient frequency and voltage stability analysis[J]. IEEE Transactions on Power Systems, 2021, 36(5): 4366-4375.
[28] HIRASE Y, SUGIMOTO K, SAKIMOTO K, et al. Analysis of resonance in microgrids and effects of system frequency stabilization using a virtual synchronous generator[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2016, 4(4): 1287-1298.
[29] LIU M Y, CHEN J R, MILANO F. On-line inertia estimation for synchronous and non-synchronous devices[J]. IEEE Transactions on Power Systems, 2021, 36(3): 2693-2701.
[30] MILANO F, ORTEGA á. A method for evaluating frequency regulation in an electrical grid—Part I: Theory[J]. IEEE Transactions on Power Systems, 2021, 36(1): 183-193.
[31] MILANO F. A python-based software tool for power system analysis[C]// 2013 IEEE Power & Energy Society General Meeting. Vancouver, Canada: IEEE, 2013: 1-5.
文章导航

/