新型电力系统与综合能源

计及转速及功率限制的双馈抽蓄自适应调频控制

  • 劳文洁 ,
  • 史林军 ,
  • 吴峰 ,
  • 杨冬梅 ,
  • 李杨
展开
  • 1.河海大学 能源与电气学院, 南京 210098
    2.南瑞集团有限公司(国网电力科学研究院有限公司)智能电网保护和运行控制国家重点实验室, 南京 211100
劳文洁(1999—),硕士生,从事抽水蓄能及其在电网中的应用等方面的研究.
史林军,副教授;E-mail:eec@hhu.edu.cn.

收稿日期: 2023-05-09

  修回日期: 2023-07-19

  录用日期: 2023-07-24

  网络出版日期: 2023-08-02

基金资助

智能电网保护和运行控制国家重点实验室开放课题(SGNR0000KJJS2200297);国家自然科学基金中英合作项目(52061635102)

Adaptive Frequency Regulation of Doubly-Fed Pumped Storage Unit Considering Speed and Power Limit

  • LAO Wenjie ,
  • SHI Linjun ,
  • WU Feng ,
  • YANG Dongmei ,
  • LI Yang
Expand
  • 1. College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China
    2. State Key Laboratory of Smart Grid Protection and Control, Nari Group Corporation(State Grid Electric Power Research Institute), Nanjing 211100, China

Received date: 2023-05-09

  Revised date: 2023-07-19

  Accepted date: 2023-07-24

  Online published: 2023-08-02

摘要

双馈抽水蓄能机组可以通过变速运行灵活调节功率,在发电和抽水工况下均具备一定的调频潜能.为挖掘双馈抽水蓄能机组在不同工况下的调频能力,分别建立其适应不同工况运行特点的调频控制模块,提出计及转速及功率限制的自适应变参数调频策略.首先,在建立考虑可逆式水泵水轮机动态特性的机组模型基础上,构建发电工况下将频率偏差转换为附加功率指令、抽水工况下将频率偏差转换为附加转速指令的调频模块.其次,分析各调频参数对于频率动态响应的影响,并以系统频率偏差最小为目标,以机组的转速及功率限制为约束,提出基于改进粒子群算法的多工况最优调频参数确定方法,在此基础上形成随机组状态实时调整的自适应变参数调频策略.最后,以含双馈抽水蓄能机组的四机两区系统为例进行仿真分析,仿真结果表明:所提调频策略使机组在不同工况、不同运行状态下均具有良好的调频性能.

本文引用格式

劳文洁 , 史林军 , 吴峰 , 杨冬梅 , 李杨 . 计及转速及功率限制的双馈抽蓄自适应调频控制[J]. 上海交通大学学报, 2025 , 59(1) : 28 -37 . DOI: 10.16183/j.cnki.jsjtu.2023.187

Abstract

Doubly-fed pumped storage unit can adjust its power flexibly through variable-speed operation, enabling it to participate in the frequency regulation of the grid in both generating and pumping modes. To explore the frequency regulation capability of doubly-fed pumped storage unit, frequency regulation modules adapted to the characteristics of units under different operating conditions are built, and a frequency regulation strategy with adaptive variable parameters considering the speed and power limit of the unit is proposed. First, based on the dynamic model of the unit considering reversible pump turbine, the frequency regulation modules are built, in which the frequency deviation is converted to additional power command in generating mode but to additional speed command in pumping mode. Then, the impacts of control parameters on the frequency dynamic response are analyzed, and the calculation method of optimal frequency regulation parameters under multi conditions is proposed based on the improved particle swarm optimization algorithm, which aims at minimizing the frequency deviation and takes the speed and power limit of the unit as constraints. Based on the proposed method, an adaptive frequency regulation strategy is further presented in which frequency regulation parameters adjust with the change of operating conditions of the unit. Finally, a four-machine two-zone system model with doubly-fed pumped storage unit is built, and the simulation results show that the frequency regulation strategy proposed can make the unit achieve a great frequency regulation performance under different operating conditions.

参考文献

[1] DONALEK P J. Pumped storage hydro: Then and now[J]. IEEE Power & Energy Magazine, 2020, 18(5): 49-57.
[2] ALIZADEH BIDGOLI M, YANG W J, AHMADIAN A. DFIM versus synchronous machine for variable speed pumped storage hydropower plants: A comparative evaluation of technical performance[J]. Renewable Energy, 2020, 159: 72-86.
[3] 李辉, 刘海涛, 宋二兵, 等. 双馈抽水蓄能机组参与电网调频的改进虚拟惯性控制策略[J]. 电力系统自动化, 2017, 41(10): 58-65.
  LI Hui, LIU Haitao, SONG Erbing, et al. Improved virtual inertia control strategy of doubly fed pumped storage unit for power network frequency modulation[J]. Automation of Electric Power Systems, 2017, 41(10): 58-65.
[4] NAG S, LEE K Y, SUCHITRA D. A comparison of the dynamic performance of conventional and ternary pumped storage hydro[J]. Energies, 2019, 12(18): 3513.
[5] 戴理韬, 高剑, 黄守道, 等. 变速恒频水力发电技术及其发展[J]. 电力系统自动化, 2020, 44(24): 169-177.
  DAI Litao, GAO Jian, HUANG Shoudao, et al. Variable-speed constant-frequency hydropower generation technology and its development[J]. Automation of Electric Power Systems, 2020, 44(24): 169-177.
[6] SCHMIDT J, KEMMETMüLLER W, KUGI A. Modeling and static optimization of a variable speed pumped storage power plant[J]. Renewable Energy, 2017, 111: 38-51.
[7] JOSEPH A, DESINGU K, SEMWAL R R, et al. Dynamic performance of pumping mode of 250 MW variable speed hydro-generating unit subjected to power and control circuit faults[J]. IEEE Transactions on Energy Conversion, 2018, 33(1): 430-441.
[8] 龚国仙, 吕静亮, 姜新建, 等. 参与一次调频的双馈式可变速抽水蓄能机组运行控制[J]. 储能科学与技术, 2020, 9(6): 1878-1884.
  GONG Guoxian, LV Jingliang, JIANG Xinjian, et al. Operation control of doubly fed adjustable speed pumped storage unit for primary frequency modulation[J]. Energy Storage Science & Technology, 2020, 9(6): 1878-1884.
[9] HUANG Y F, YANG W J, ZHAO Z G, et al. Dynamic modeling and favorable speed command of variable-speed pumped-storage unit during power regulation[J]. Renewable Energy, 2023, 206: 769-783.
[10] 李辉, 王坤, 刘海涛, 等. 交流励磁抽水蓄能机组变下垂系数调频控制策略[J]. 电力自动化设备, 2018, 38(7): 68-73.
  LI Hui, WANG Kun, LIU Haitao, et al. Variable droop coefficient frequency control strategy of AC excited pumped storage unit[J]. Electric Power Automation Equipment, 2018, 38(7): 68-73.
[11] 朱珠, 潘文霞, 刘铜锤, 等. 变速抽蓄机组频率响应机理模型与性能研究[J]. 电网技术, 2023, 47(2): 463-474.
  ZHU Zhu, PAN Wenxia, LIU Tongchui, et al. Frequency response mechanism modeling and performance analysis of adjustable-speed pumped storage unit[J]. Power System Technology, 2023, 47(2): 463-474.
[12] ZHU Z, PAN W X, LIU T C, et al. Dynamic modeling and eigen analysis of adjustable-speed pumped storage unit in pumping mode under power regulation[J]. IEEE Access, 2021, 9: 155035-155047.
[13] 陈亚红, 邓长虹, 刘玉杰, 等. 抽水工况双馈可变速抽蓄机组机电暂态建模及有功-频率耦合特性[J]. 中国电机工程学报, 2022, 42(3): 942-957.
  CHEN Yahong, DENG Changhong, LIU Yujie, et al. Electromechanical transient modelling and active power-frequency coupling characteristics of doubly-fed variable speed pumped storage under pumping mode[J]. Proceedings of the CSEE, 2022, 42(3): 942-957.
[14] SHI L J, LAO W J, WU F, et al. Frequency regulation control and parameter optimization of doubly-fed induction machine pumped storage hydro unit[J]. IEEE Access, 2022, 10: 102586-102598.
[15] 金皓纯, 葛敏辉, 徐波. 基于极限学习机的双馈感应风力发电机综合自适应调频参数优化方法[J]. 上海交通大学学报, 2021, 55(Sup. 2): 42-50.
  JIN Haochun, GE Minhui, XU Bo. Optimization of DFIG comprehensive adaptive frequency regulation parameters based on extreme learning machine[J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup. 2): 42-50.
[16] 邵昊舒, 蔡旭. 大型风电机组惯量控制研究现状与展望[J]. 上海交通大学学报, 2018, 52(10): 1166-1177.
  SHAO Haoshu, CAI Xu. Research status and prospect of inertia control for large scale wind turbines[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1166-1177.
[17] 全璐瑶. 基于虚拟水头技术的可变速抽水蓄能系统功率调节策略研究[D]. 北京: 华北电力大学, 2019.
  QUAN Luyao. Research on power regulation of adjustable-speed pumped-storage system based on virtual head technology[D]. Beijing: North China Electric Power University, 2019.
[18] CHEN Y H, XU W, LIU Y, et al. Reduced-order system frequency response modeling for the power grid integrated with the type-II doubly-fed variable speed pumped storage units[J]. IEEE Transactions on Power Electronics, 2022, 37(9): 10994-11006.
[19] PAN W X, ZHU Z, LIU T C, et al. Optimal control for speed governing system of on-grid adjustable-speed pumped storage unit aimed at transient performance improvement[J]. IEEE Access, 2021, 9: 40445-40457.
[20] 王同森, 程雪坤. 计及转速限值的双馈风机变下垂系数控制策略[J]. 电力系统保护与控制, 2021, 49(9): 29-36.
  WANG Tongsen, CHENG Xuekun. Variable droop coefficient control strategy of a DFIG considering rotor speed limit[J]. Power System Protection & Control, 2021, 49(9): 29-36.
[21] 符杨, 丁枳尹, 米阳. 计及储能调节的时滞互联电力系统频率控制[J]. 上海交通大学学报, 2022, 56(9): 1128-1138.
  FU Yang, DING Zhiyin, MI Yang. Frequency control strategy for interconnected power systems with time delay considering optimal energy storage regulation[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1128-1138.
[22] 游广增, 杭志, 陈凯, 等. 基于改进粒子群算法的风机频率控制研究[J]. 电力工程技术, 2020, 39(3): 43-50.
  YOU Guangzeng, HANG Zhi, CHEN Kai, et al. Wind turbine generator frequency control based on improved particle swarm optimization[J]. Electric Power Engineering Technology, 2020, 39(3): 43-50.
文章导航

/