新型电力系统与综合能源

计及需求响应的微能网综合能源多时空尺度优化调度

展开
  • 太原理工大学 电力系统运行与控制山西省重点实验室,太原 030024
秦文萍(1972-),博士,教授,从事电力系统可靠性分析、微电网运行与控制、新能源发电技术和微机保护研究.

收稿日期: 2022-05-24

  修回日期: 2022-07-08

  录用日期: 2022-09-29

  网络出版日期: 2023-08-04

基金资助

国家自然科学基金联合基金重点支持项目(U1910216);山西省科技重大项目(20181102028)

Multi-Time-Space Scale Optimal Dispatch of Integrated Energy in Micro-Energy Grid Considering Demand Response

Expand
  • Shanxi Provincial Key Laboratory of Power System Operation and Control, Taiyuan University of Technology, Taiyuan 030024, China

Received date: 2022-05-24

  Revised date: 2022-07-08

  Accepted date: 2022-09-29

  Online published: 2023-08-04

摘要

综合能源系统运行是当前能源研究领域的热点之一,随着能源领域机制的改革,含有多微能网的综合能源系统给电网运行带来了巨大挑战.针对含有多微能网综合能源系统接入上层配网造成的经济与运行问题,提出一种考虑需求响应的微能网综合能源多时空尺度优化运行策略.从能源角度构建一个多维能源供需平衡模型;进一步建立上、中、下共3层协同优化的多时空尺度运行模型,上层采用日前调度,中层采用日内调度,下层采用实时调度,3个调度阶段分别引入可替代、可转移和可削减负荷进行需求响应优化.算例表明,该策略可以实现多维能源之间的协调互补以及多种能源在不同时间和空间尺度的协调运行,提高了系统运行的经济性.

本文引用格式

秦文萍, 杨镜司, 景祥, 姚宏民, 李晓舟, 张信哲 . 计及需求响应的微能网综合能源多时空尺度优化调度[J]. 上海交通大学学报, 2023 , 57(12) : 1583 -1596 . DOI: 10.16183/j.cnki.jsjtu.2022.177

Abstract

The operation of the integrated energy system is one of the hot spots in the current energy research field. With the reform of the energy field mechanism, the integrated energy system with multi-micro-energy grids poses great challenges to the operation of the power grid. Aimed at the economic and operational problems caused by the integration of multi-micro-energy grid integrated energy systems into the upper distribution network, a multi-temporal and spatial scale optimization operation strategy for integrated energy of micro-energy grid considering demand response is proposed. Moreover, a multi-dimensional energy supply and demand balance model from the perspective of energy is constructed. Furthermore, a multi-time-space scale operation model with upper, middle, and lower layers of collaborative optimization is established. The upper layer adopts day-ahead scheduling, the middle layer adopts intraday scheduling, and the lower layer adopts real-time scheduling with replaceable, transferable, and curtailable loads for demand response optimization. Calculation examples show that this strategy can realize the co-ordination and complementation of multi-dimensional energy sources, realize the coordinated operation of multiple energy sources at different time and space scales, and improve the economy of system operation.

参考文献

[1] 周星球, 郑凌蔚, 杨兰, 等. 考虑多重不确定性的综合能源系统日前优化调度[J]. 电网技术, 2020, 44(7): 2466-2473.
[1] ZHOU Xingqiu, ZHENG Lingwei, YANG Lan, et al. Day-ahead optimal dispatch of an integrated energy system considering multiple uncertainty[J]. Power System Technology, 2020, 44(7): 2466-2473.
[2] 张沈习, 王丹阳, 程浩忠, 等. 双碳目标下低碳综合能源系统规划关键技术及挑战[J]. 电力系统自动化, 2022, 46(8): 189-207.
[2] ZHANG Shenxi, WANG Danyang, CHENG Hao-zhong, et al. Key technologies and challenges of low-carbon integrated energy system planning for carbon emission peak and carbon neutrality[J]. Automation of Electric Power Systems, 2022, 46(8): 189-207.
[3] 张忠, 王建学, 曹晓宇. 基于负荷分类调度的孤岛型微网能量管理方法[J]. 电力系统自动化, 2015, 39(15): 17-23.
[3] ZHANG Zhong, WANG Jianxue, CAO Xiaoyu. An energy management method of island microgrid based on load classification and scheduling[J]. Automation of Electric Power Systems, 2015, 39(15): 17-23.
[4] 艾欣, 陈政琦, 孙英云, 等. 基于需求响应的电-热-气耦合系统综合直接负荷控制协调优化研究[J]. 电网技术, 2019, 43(4): 1160-1171.
[4] AI Xin, CHEN Zhengqi, SUN Yingyun, et al. Study on integrated DLC coordination optimization of electric-thermal-gas coupling system considering demand response[J]. Power System Technology, 2019, 43(4): 1160-1171.
[5] 赵波, 汪湘晋, 张雪松, 等. 考虑需求侧响应及不确定性的微电网双层优化配置方法[J]. 电工技术学报, 2018, 33(14): 3284-3295.
[5] ZHAO Bo, WANG Xiangjin, ZHANG Xuesong, et al. Two-layer method of microgrid optimal sizing considering demand-side response and uncertainties[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3284-3295.
[6] 田丰, 贾燕冰, 任海泉, 等. 考虑碳捕集系统的综合能源系统“源-荷”低碳经济调度[J]. 电网技术, 2020, 44(9): 3346-3355.
[6] TIAN Feng, JIA Yanbing, REN Haiquan, et al. “source-load” low-carbon economic dispatch of integrated energy system considering carbon capture system[J]. Power System Technology, 2020, 44(9): 3346-3355.
[7] 崔杨, 闫石, 仲悟之, 等. 含电转气的区域综合能源系统热电优化调度[J]. 电网技术, 2020, 44(11): 4254-4264.
[7] CUI Yang, YAN Shi, ZHONG Wuzhi, et al. Optimal thermoelectric dispatching of regional integrated energy system with power-to-gas[J]. Power System Technology, 2020, 44(11): 4254-4264.
[8] 郑超铭, 黄博南, 王子心, 等. 计及网络传输损耗的电热综合能源系统多目标优化调度[J]. 电网技术, 2020, 44(1): 141-154.
[8] ZHENG Chaoming, HUANG Bonan, WANG Zixin, et al. Multi-objective optimization dispatch for integrated electro-heating systems including network transmission losses[J]. Power System Technology, 2020, 44(1): 141-154.
[9] 王明军, 穆云飞, 孟宪君, 等. 考虑热能输运动态特性的电-热综合能源系统优化调度方法[J]. 电网技术, 2020, 44(1): 132-142.
[9] WANG Mingjun, MU Yunfei, MENG Xianjun, et al. Optimal scheduling method for integrated electro-thermal energy system considering heat transmission dynamic characteristics[J]. Power System Technology, 2020, 44(1): 132-142.
[10] 谭洪, 颜伟, 王浩. 基于建筑物热能流分析的沼-风-光孤立微能网优化调度模型[J]. 电网技术, 2020, 44(7): 2483-2492.
[10] TAN Hong, YAN Wei, WANG Hao. Optimal dispatch model of biogas-wind-solar isolated multi-energy micro-grid based on thermal energy flow analysis of buildings[J]. Power System Technology, 2020, 44(7): 2483-2492.
[11] 任海泉, 贾燕冰, 田丰, 等. 含多微能网的城市能源互联网优化调度[J]. 高电压技术, 2022, 48(2): 554-564.
[11] REN Haiquan, JIA Yanbing, TIAN Feng, et al. Urban energy Internet optimal dispatch with multi-micro energy network[J]. High Voltage Engineering, 2022, 48(2): 554-564.
[12] 李廷钧, 韩肖清, 杜欣慧. 计及能量互保行为的综合能源园区多时间尺度调度[J]. 电力系统自动化, 2019, 43(23): 164-172.
[12] LI Tingjun, HAN Xiaoqing, DU Xinhui. Multi-time scale dispatching for integrated energy park considering energy transfer behavior[J]. Automation of Electric Power Systems, 2019, 43(23): 164-172.
[13] LI P, WANG Z X, WANG J H, et al. A multi-time-space scale optimal operation strategy for a distributed integrated energy system[J]. Applied Energy, 2021, 289: 116698.
[14] 魏震波, 张海涛, 魏平桉, 等. 考虑动态激励型需求响应的微电网两阶段优化调度[J]. 电力系统保护与控制, 2021, 49(19): 1-10.
[14] WEI Zhenbo, ZHANG Haitao, WEI Ping’an, et al. Two-stage optimal dispatching for microgrid considering dynamic incentive-based demand response[J]. Power System Protection and Control, 2021, 49(19): 1-10.
[15] PENG D. Enabling utility-scale electrical energy storage through underground ydrogen-natural gas co-storage[D]. Waterloo: University of Waterloo, 2013.
[16] 康海鹏, 李长城, 刘经纬, 等. 计及碳捕集-电转气耦合特性的电-气互联系统连锁故障评估[J]. 电网技术, 2022, 46(9): 3394-3408.
[16] KANG Haipeng, LI Changcheng, LIU Jingwei, et al. Assessment of cascading failures in integrated electricity and gas system considering coupling characteristics of carbon capture-power to gas[J]. Power System Technology, 2022, 46(9): 3394-3408.
[17] 熊军华, 焦亚纯, 王梦迪. 计及电转气的区域综合能源系统日前优化调度[J]. 现代电力, 2022, 39(5): 554-561.
[17] XIONG Junhua, JIAO Yachun, WANG Mengdi. A day-ahead optimal scheduling of regional integrated energy system considering power to gas[J]. Modern Electric Power, 2022, 39(5): 554-561.
[18] 徐筝, 孙宏斌, 郭庆来. 综合需求响应研究综述及展望[J]. 中国电机工程学报, 2018, 38(24): 7194-7205.
[18] XU Zheng, SUN Hongbin, GUO Qinglai. Review and prospect of integrated demand response[J]. Proceedings of the CSEE, 2018, 38(24): 7194-7205.
[19] MA Z J, ZHENG Y P, MU C L, et al. Optimal trading strategy for integrated energy company based on integrated demand response considering load classifications[J]. International Journal of Electrical Power & Energy Systems, 2021, 128: 106673.
[20] LV S, WEI Z N, CHEN S, et al. Integrated demand response for congestion alleviation in coupled power and transportation networks[J]. Applied Energy, 2021, 283: 116206.
[21] 徐成司, 董树锋, 张舒鹏, 等. 面向工业园区的集中-分布式综合需求响应方法[J]. 电网技术, 2021, 45(2): 489-500.
[21] XU Chengsi, DONG Shufeng, ZHANG Shupeng, et al. Centralized-distributed integrated demand response method for industrial park[J]. Power System Technology, 2021, 45(2): 489-500.
[22] SAMIMI A, NIKZAD M, MOHAMMADI M. Real-time electricity pricing of a comprehensive demand response model in smart grids[J]. International Transactions on Electrical Energy Systems, 2017, 27(3): e2256.
[23] NIKZAD M, SAMIMI A. Integration of designing price-based demand response models into a stochastic bi-level scheduling of multiple energy carrier microgrids considering energy storage systems[J]. Applied Energy, 2021, 282: 116163.
[24] 魏震波, 任小林, 黄宇涵. 考虑综合需求侧响应的区域综合能源系统多目标优化调度[J]. 电力建设, 2020, 41(7): 92-99.
[24] WEI Zhenbo, REN Xiaolin, HUANG Yuhan. Multi-objective optimal dispatch for integrated energy system considering integrated demand response[J]. Electric Power Construction, 2020, 41(7): 92-99.
[25] 谭俊丰, 杨苹, 张凡, 等. 考虑能量-辅助服务下的园区综合能源系统多时间尺度优化模型[J]. 中国电力, 2022, 55(10): 100-111.
[25] TAN Junfeng, YANG Ping, ZHANG Fan, et al. Multi-time scale optimization dispatch model of integrated energy system considering energy-auxiliary service[J]. Electric Power, 2022, 55(10): 100-111.
[26] LI P, WANG Z X, YANG W H, et al. Hierarchically partitioned coordinated operation of distributed integrated energy system based on a master-slave game[J]. Energy, 2021, 214: 119006.
[27] LI P, WANG Z X, WANG N, et al. Stochastic robust optimal operation of community integrated energy system based on integrated demand response[J]. International Journal of Electrical Power & Energy Systems, 2021, 128: 106735.
文章导航

/