轨迹可控的微型水母机器人研制
收稿日期: 2023-04-17
修回日期: 2023-06-26
录用日期: 2023-07-31
网络出版日期: 2023-08-10
基金资助
“共融机器人基础理论与关键技术研究”重大研究计划集成项目(92248301);江苏省自然科学基金资助项目(BK20200984)
Development of a Small Jellyfish Robot with Controllable Trajectory
Received date: 2023-04-17
Revised date: 2023-06-26
Accepted date: 2023-07-31
Online published: 2023-08-10
为解决微型机器人在较小机身尺寸下实现高效轨迹控制的难题,设计并研制了微型仿水母机器人JRT,其由气室、重心调整机构和仿水母推进器三部分组成,尺寸仅为⌀6.8 cm×5.3 cm,可通过重心调整机构和仿水母推进器协同控制有效实现水下轨迹可控.水下实验验证了机器人JRT沿竖直方向游泳和悬停、水平定向游泳以及水平弹射功能,并通过对机器人JRT沿竖直方向和水平方向游泳过程中的力平衡关系和运动状态数据分析提出了轨迹控制方案,测得水平定向游泳的速度可达到1.7 cm/s,轨迹偏差为0~3.4 cm,展现了微型仿水母机器人JRT较好的轨迹控制能力,可见其在水下资源勘查、环境监测等领域的应用潜力.
王琦, 李绿洲, 董旭, 袁宁一, 丁建宁 . 轨迹可控的微型水母机器人研制[J]. 上海交通大学学报, 2024 , 58(8) : 1240 -1248 . DOI: 10.16183/j.cnki.jsjtu.2023.135
In order to solve the problem of efficient trajectory control of centimeter-scale robots with small size, a small jellyfish robot (JRT) is designed and developed, which is composed of an air chamber, a center of gravity adjustment device and a jellyfish-inspired thruster with a size of only ⌀6.8 cm × 5.3 cm. Its trajectory can be effectively controlled underwater through the coordination of the center of gravity adjustment device and jellyfish-inspired thruster. Underwater experiments verify the function of JRT swimming and hovering in the vertical direction, horizontal directional swimming, and horizontal ejection. By analyzing the force balance relationship and motion state data of JRT swimming in the vertical and horizontal directions, a trajectory control scheme is proposed. The speed of horizontal directional swimming can reach 1.7 cm/s, and the trajectory deviation is 0—3.4 cm, which shows that the JRT has a good trajectory control ability and is expected to be applied in underwater resource exploration, environmental monitoring, and other fields.
[1] | ARACRI S, GIORGIO-SERCHI F, SUARIA G, et al. Soft robots for ocean exploration and offshore operations: A perspective[J]. Soft Robotics, 2021, 8(6): 625-639. |
[2] | LI G R, CHEN X P, ZHOU F H, et al. Self-powered soft robot in the mariana trench[J]. Nature, 2021, 591: 66-71. |
[3] | 庞师坤, 王健, 易宏, 等. 基于传感探测系统的多自治水下机器人编队协调控制[J]. 上海交通大学学报, 2019, 53(5): 549-555. |
PANG Shikun, WANG Jian, YI Hong, et al. Formation control of multiple autonomous underwater vehicles based on sensor measuring system[J]. Journal of Shanghai Jiao Tong University, 2019, 53(5): 549-555. | |
[4] | YE J, YAO Y C, GAO J Y, et al. LM-Jelly: Liquid metal enabled biomimetic robotic jellyfish[J]. Soft Robotics, 2022, 9(6): 1098-1107. |
[5] | VILLANUEVA A, SMITH C, PRIYA S. A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators[J]. Bioinspiration & Biomimetics, 2011, 6(3): 036004. |
[6] | JOSHI A, KULKARNI A, TADESSE Y. Fludojelly: Experimental study on jellyfish-like soft robot enabled by soft pneumatic composite (SPC)[J]. Robotics, 2019, 8(3): 56. |
[7] | FRAME J, LOPEZ N, CURET O, et al. Thrust force characterization of free-swimming soft robotic jellyfish[J]. Bioinspiration & Biomimetics, 2018, 13(6): 064001. |
[8] | CHENG T Y, LI G R, LIANG Y M, et al. Untethered soft robotic jellyfish[J]. Smart Materials and Structures, 2019, 28(1): 015019. |
[9] | XIE O, LI B Q, YAN Q. Computational and experimental study on dynamics behavior of a bionic underwater robot with multi-flexible caudal fins[J]. Industrial Robot, 2018, 45: 267-274. |
[10] | WANG Q, LU X L, YUAN N Y, et al. Small-scale soft robot with high speed and load capacity inspired by kangaroo hopping[J]. Advanced Intelligent Systems, 2022, 4(1): 2100129. |
[11] | SAYED M E, ROBERTS J O, MCKENZIE R M, et al. Limpet II: A modular, untethered soft robot[J]. Soft Robotics, 2021, 8(3): 319-339. |
[12] | WANG Q, LU X L, YUAN N Y, et al. Centimeter-scale underwater robot with high-speed inspired by jellyfish[J]. IEEE Robotics and Automation Letters, 2023, 8(5): 2976-2982. |
[13] | 苏浩. 微小型水下机器人模块化技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2011. |
SU Hao. Research on the modularization technology for mini underwear vehicle[D]. Harbin:Harbin Engineering University, 2011. |
/
〈 |
|
〉 |