尾水管内气液两相流动测量
收稿日期: 2023-03-14
修回日期: 2023-06-21
录用日期: 2023-06-29
网络出版日期: 2023-07-12
基金资助
国家自然科学基金(52276158);国家自然科学基金(52206203)
Measurement of Gas-Liquid Two-Phase Flow in Draft Tube
Received date: 2023-03-14
Revised date: 2023-06-21
Accepted date: 2023-06-29
Online published: 2023-07-12
当水轮机在部分负荷工况下运行时,尾水管内会形成不稳定的螺旋涡带流动,导致严重的流量不平衡,进而影响系统动态特性.获取尾水管内完整的气液两相流动,是分析涡带生成和发展机理从而对其进行有效控制的基础.为此,本文突破传统测量技术在气液两相流测量中的局限性,结合粒子图像测速和脉冲阴影技术,同步测量液相速度场和两个垂直方向的涡带形态.分析不同涡带形态的演化过程,进一步通过图像处理获取螺旋涡带的直径和空间信息,实现单螺旋涡带的三维重建,得到单螺旋涡带清晰的三维形态和旋转进动过程.最后对尾水管内呈现单螺旋涡带时的液相速度场进行分析,并将液相速度场与涡带的三维形态进行空间关联分析.实验研究表明:尾水管内涡带呈现单螺旋、双螺旋、气芯堆叠3种形态的不稳定循环流动演化,单螺旋涡带局部一分为二时,会转化为双螺旋涡带;单螺旋涡带局部螺旋升角不断减小时,会发生涡带堆叠破裂;尾水管内呈现单螺旋涡带时,涡带整体随液相主流绕中心轴线旋转进动,同时涡带自身局部存在绕某一轴线的旋转,涡带形态的螺旋旋向与整体旋转进动的螺旋旋向相反.流动根据轴向速度分为外围主流区和中心滞止区两部分,主流区和滞止区之间的剪切层卷起形成旋涡,液相旋涡的位置决定了螺旋涡带的空间形态.
李金凤, 陈武光, 张正川, 徐用良, 李开盈, 尹俊连, 王德忠 . 尾水管内气液两相流动测量[J]. 上海交通大学学报, 2024 , 58(8) : 1188 -1200 . DOI: 10.16183/j.cnki.jsjtu.2023.091
The limitation of traditional measurement technology in gas-liquid two-phase flow measurement is broken through.The liquid velocity field and vortex rope morphology from two vertical directions were measured synchronically by using particle image velocimetry and pulsed shadowgraphy technique. Experimental measurements show that the vortex rope in the draft tube presents three kinds of unstable circulation flow evolution, single spiral, double spiral, and overstocked rupture. When a single spiral vortex rope is partially split into two, it becomes a double spiral vortex rope. When the local spiral rise angle of a single spiral vortex rope decreases, it becomes an overstocked rupture. When there is a single spiral vortex rope in the draft tube, the vortex rope rotates precession around the central axis along with the liquid main flow, and the flow is divided into two parts, the outer main flow zone and the central stagnation zone, according to the axial velocity. The shear layer between the main flow zone and the stagnation zone rolls up to form several vortices. The position of liquid vortices determines the spatial morphology of the spiral vortex rope.
[1] | 周星, 伍鹤皋, 苏凯. 混流式水轮机轴向水推力研究综述和讨论[J]. 水利学报, 2019, 50(10): 1242-1252. |
ZHOU Xing, WU Hegao, SU Kai. Overview and discussion on hydraulic axial thrust in Francis turbine research[J]. Journal of Hydraulic Engineering, 2019, 50(10): 1242-1252. | |
[2] | 陈秋华, 张晓曦, 何思源. 初始运行工况对水泵水轮机飞逸过渡过程水力特性的影响[J]. 水利学报, 2020, 51(7): 858-868. |
CHEN Qiuhua, ZHANG Xiaoxi, HE Siyuan. Influence of the initial working condition on the hydraulic performance of the pump-turbine during runaway transient scenario[J]. Journal of Hydraulic Engineering, 2020, 51(7): 858-868. | |
[3] | 周勤, 夏林生, 张春泽, 等. 水泵水轮机甩负荷过渡过程中的压力脉动和转轮受力[J]. 水利学报, 2018, 49(11): 1429-1438. |
ZHOU Qin, XIA Linsheng, ZHANG Chunze, et al. Transient pressure fluctuations and runner loadings of a model pump-turbine during a load rejection process[J]. Journal of Hydraulic Engineering, 2018, 49(11): 1429-1438. | |
[4] | KUMAR S, CERVANTES M J, GANDHI B K. Rotating vortex rope formation and mitigation in draft tube of hydro turbines-A review from experimental perspective[J]. Renewable and Sustainable Energy Reviews, 2021, 136: 110354. |
[5] | NICOLET C, ZOBEIRI A, MARUZEWSKI P, et al. Experimental investigations on upper part load vortex rope pressure fluctuations in francis turbine draft tube[J]. International Journal of Fluid Machinery and Systems, 2011, 4(1): 179-190. |
[6] | SKRIPKIN S, TSOY M, SHTORK S, et al. Comparative analysis of twin vortex ropes in laboratory models of two hydro-turbine draft-tubes[J]. Journal of Hydraulic Research, 2016, 54(4): 450-460. |
[7] | ALEKSEENKO S V, KUIBIN P A, SHTORK S I, et al. Vortex reconnection in a swirling flow[J]. JETP Letters, 2016, 103(7): 455-459. |
[8] | GOYAL R, GANDHI B K, CERVANTES M J. PIV measurements in Francis turbine—A review and application to transient operations[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2976-2991. |
[9] | LAI X D, LIANG Q W, YE D X, et al. Experimental investigation of flows inside draft tube of a high-head pump-turbine[J]. Renewable Energy, 2019, 133: 731-742. |
[10] | GOYAL R, CERVANTES M J, GANDHI B K. Vortex rope formation in a high head model francis turbine[J]. Journal of Fluids Engineering, 2017, 139(4): 041102. |
[11] | TRIDON S, CIOCAN G D, BARRE S, et al. 3D time-resolved PIV measurement in a francis turbine draft tube[C]// 24th Symposium on Hydraulic Machinery and Systems. Fos Do Iguassu, Brazil: IAHR, 2008. |
[12] | ILIESCU M S, CIOCAN G D, AVELLAN F. Analysis of the cavitating draft tube vortex in a francis turbine using particle image velocimetry measurements in two-phase flow[J]. Journal of Fluids Engineering, 2008, 130(2): 146-157. |
[13] | 孙龙刚, 郭鹏程, 罗兴锜. 水轮机尾水管涡带压力脉动同步及非同步特性研究[J]. 农业机械学报, 2019, 50(9): 122-129. |
SUN Longgang, GUO Pengcheng, LUO Xingqi. Investigation on synchronous and asynchronous characteristics of pressure fluctuations towards precessing vortex rope in francis turbine draft tube[J]. Transactions of the Chinese Society for Agricultural Machine-ry, 2019, 50(9): 122-129. | |
[14] | SKRIPKIN S G, KUIBIN P A, SHTORK S I. The effect of air injection on the parameters of swirling flow in a Turbine-99 draft tube model[J]. Technical Physics Letters, 2015, 41(7): 638-640. |
[15] | LI Y F, BLOIS G, KAZEMIFAR F, et al. A particle-based image segmentation method for phase separation and interface detection in PIV images of immiscible multiphase flow[J]. Measurement Science and Technology, 2021, 32(9): 095208. |
/
〈 |
|
〉 |