电子信息与电气工程

基于新扩展移相双有源全桥变换器降压-升压模式下电流应力优化

  • 陶海军 ,
  • 王宏祎 ,
  • 杨乃通
展开
  • 1.河南理工大学 电气工程与自动化学院,河南 焦作 454003
    2.河南省智能装备直驱技术与控制国际联合实验室,河南 焦作 454003
陶海军(1980—),副教授,从事大功率开关电源及其控制的研究;E-mail:taohj99@hpu.edu.cn.

收稿日期: 2023-03-10

  修回日期: 2023-07-03

  录用日期: 2023-07-04

  网络出版日期: 2023-07-17

基金资助

国家自然科学基金(U1804143);河南省科技攻关项目(222102220014);河南省高校基本科研业务费专项资金资助(NSFRF210409)

Current Stress Optimization in Buck-Boost Mode Based on New Extended Phase-Shift Dual Active Full-Bridge Converter

  • TAO Haijun ,
  • WANG Hongyi ,
  • YANG Naitong
Expand
  • 1. School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454003, Henan, China
    2. Henan International Joint Laboratory of Direct Drive and Control of Intelligent Equipment, Jiaozuo 454003, Henan, China

Received date: 2023-03-10

  Revised date: 2023-07-03

  Accepted date: 2023-07-04

  Online published: 2023-07-17

摘要

为降低双有源全桥变换器在降压-升压模式下的电流应力,提出一种基于新扩展移相调制的电流应力优化控制策略.首先,将变压器两端输出高电平电压之间移相量定义为外移相角,再对比分析降压-升压模式下内移相角在变压器不同侧时变换器的工作特性,根据移相角之间的关系划分为3种工作模态,得到电流应力表达式和功率模型.然后,对比分析得到优化工作模式,利用拉格朗日乘数法算法获取电流应力最优的相移组合.最后,搭建实验平台在降压-升压模式下对变换器进行验证,实验结果表明电流应力优化控制策略显著降低变换器在降压-升压模式下的电流应力.

本文引用格式

陶海军 , 王宏祎 , 杨乃通 . 基于新扩展移相双有源全桥变换器降压-升压模式下电流应力优化[J]. 上海交通大学学报, 2024 , 58(10) : 1585 -1595 . DOI: 10.16183/j.cnki.jsjtu.2023.088

Abstract

To reduce the current stress of dual active full-bridge converters in the buck-boost mode, a current stress optimization control strategy based on new extended-phase-shift modulation is proposed. First, the phase shift between the output high-level voltages at both ends of the transformer is defined as the external phase shift angle. Then, the working characteristics of the converter are compared and analyzed when the internal phase shift angle is on different sides of the transformer in the voltage buck-boost mode. According to the relationship between the phase shift angles, working modes are divided into three types, and the current stress expression and power model are obtained. Moreover, the improved working mode is obtained by comparative analysis, and the optimal phase shift combination of current stress is obtained by using Lagrange multipler method algorithm. Finally, an experimental platform is established to verify the converter in the buck-boost mode. The experimental results show that the current stress optimization control strategy significantly reduces the current stress of the converter in the buck-boost mode.

参考文献

[1] SHAO S, CHEN L L, SHAN Z Y, et al. Modeling and advanced control of dual-active-bridge DC-DC converters: A review[J]. IEEE Transactions on Power Electronics, 2022, 37(2): 1524-1547.
[2] XU Q W, VAFAMAND N, CHEN L L, et al. Review on advanced control technologies for bidirectional DC/DC converters in DC microgrids[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2021, 9(2): 1205-1221.
[3] 许正平, 李俊. 双向全桥DC-DC变换器高效能控制研究与实现[J]. 电力系统保护与控制, 2016, 44(2): 140-146.
  XU Zhengping, LI Jun. Research and implementation of bidirectional full bridge DC-DC converter with high-efficiency control[J]. Power System Protection & Control, 2016, 44(2): 140-146.
[4] 孙凯, 陈欢, 吴红飞. 面向储能系统应用的隔离型双向DC-DC变换器分析方法与控制技术综述[J]. 电工电能新技术, 2019, 38(8): 1-9.
  SUN Kai, CHEN Huan, WU Hongfei. A review of analysis method and control technology for isolated bidirectional DC-DC converter used in energy storage systems[J]. Advanced Technology of Electrical Engineering & Energy, 2019, 38(8): 1-9.
[5] 付永升, 任海鹏, 李翰山, 等. SiC-MOSFET与Si-IGBT混合开关车载双向充电器中线桥臂设计及控制[J]. 中国电机工程学报, 2020, 40(19): 6330-6345.
  FU Yongsheng, REN Haipeng, LI Hanshan, et al. Neutral leg design and control of electric vehicle on-board bidirectional charger based on SiC-MOSFET and Si-IGBT hybrid devices[J]. Proceedings of the CSEE, 2020, 40(19): 6330-6345.
[6] 赵争鸣, 冯高辉, 袁立强, 等. 电能路由器的发展及其关键技术[J]. 中国电机工程学报, 2017, 37(13): 3823-3834.
  ZHAO Zhengming, FENG Gaohui, YUAN Liqiang, et al. The development and key technologies of electric energy router[J]. Proceedings of the CSEE, 2017, 37(13): 3823-3834.
[7] 潘加阳. 基于直流微网的双有源全桥DC-DC变换器优化调制研究[D]. 西安: 西安理工大学, 2022.
  PAN Jiayang. Research on optimal modulation of dual active full-bridge DC-DC converter based on dc microgrid[D]. Xi’an: Xi’an University of Technology, 2022.
[8] ZHAO B, SONG Q, LIU W H, et al. Current-stress-optimized switching strategy of isolated bidirectional DC-DC converter with dual-phase-shift control[J]. IEEE Transactions on Industrial Electronics, 2013, 60(10): 4458-4467.
[9] SONG W S, HOU N, WU M Y. Virtual direct power control scheme of dual active bridge DC-DC converters for fast dynamic response[J]. IEEE Transactions on Power Electronics, 2018, 33(2): 1750-1759.
[10] 王洋, 赵训威. 双有源桥变换器电流应力优化[J]. 电力电子技术, 2022, 56(4): 130-132.
  WANG Yang, ZHAO Xunwei. Optimization of current stress for dual active bridge converter[J]. Power Electronics, 2022, 56(4): 130-132.
[11] GU Q, YUAN L Q, NIE J T, et al. Current stress minimization of dual-active-bridge DC-DC converter within the whole operating range[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2019, 7(1): 129-142.
[12] 谷庆, 袁立强, 聂金铜, 等. 基于开关组合规律的双有源桥DC-DC变换器传输功率特性[J]. 电工技术学报, 2017, 32(13): 69-79.
  GU Qing, YUAN Liqiang, NIE Jintong, et al. Transmission power characteristics of dual-active-bridge DC-DC converter based on the switching combination rules[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 69-79.
[13] 赵彪, 安峰, 宋强, 等. 双有源桥式直流变压器发展与应用[J]. 中国电机工程学报, 2021, 41(1): 288-298.
  ZHAO Biao, AN Feng, SONG Qiang, et al. Development and application of DC transformer based on dual-active-bridge[J]. Proceedings of the CSEE, 2021, 41(1): 288-298.
[14] ZHAO B, YU Q G, SUN W X. Extended-phase-shift control of isolated bidirectional DC-DC converter for power distribution in microgrid[J]. IEEE Transactions on Power Electronics, 2012, 27(11): 4667-4680.
[15] 张勋, 王广柱, 王婷. 双向全桥DC-DC变换器基于电感电流应力的双重移相优化控制[J]. 电工技术学报, 2016, 31(22): 100-106.
  ZHANG Xun, WANG Guangzhu, WANG Ting. Optimized control based on current-stress of bi-directional full-bridge DC-DC converters with dual-phase-shifting control[J]. Transactions of China Electrotechnical Society, 2016, 31(22): 100-106.
[16] SHI H C, WEN H Q, CHEN J, et al. Minimum-backflow-power scheme of DAB-based solid-state transformer with extended-phase-shift control[J]. IEEE Transactions on Industry Applications, 2018, 54(4): 3483-3496.
[17] 安峰, 宋文胜, 杨柯欣. 基于扩展相移的双有源全桥DC-DC变换器多目标优化控制方法[J]. 中国电机工程学报, 2019, 39(3): 822-831.
  AN Feng, SONG Wensheng, YANG Kexin. Multi-objective optimization control scheme based on extended phase-shift of dual-active-bridge DC-DC converters[J]. Proceedings of the CSEE, 2019, 39(3): 822-831.
[18] 郭华越, 张兴, 赵文广, 等. 扩展移相控制的双有源桥DC-DC变换器的优化控制策略[J]. 中国电机工程学报, 2019, 39(13): 3889-3899.
  GUO Huayue, ZHANG Xing, ZHAO Wenguang, et al. Optimal control strategy of dual active bridge DC-DC converters with extended-phase-shift control[J]. Proceedings of the CSEE, 2019, 39(13): 3889-3899.
[19] 王攀攀, 徐泽涵, 高利强, 等. 新扩展移相角下的双有源桥DC-DC变换器优化控制策略[J]. 中国电机工程学报, 2023, 43(2): 727-738.
  WANG Panpan, XU Zehan, GAO Liqiang, et al. Optimal control strategy for dual active bridge DC-DC converter with new extended-phase-shift angle[J]. Proceedings of the CSEE, 2023, 43(2): 727-738.
文章导航

/