船舶海洋与建筑工程

浅海质点振速场强度的深度分布特性

  • 张海刚 ,
  • 谢金怀 ,
  • 刘佳琪 ,
  • 龚李佳 ,
  • 李智
展开
  • 1.哈尔滨工程大学 水声技术全国重点实验室,哈尔滨 150001
    2.哈尔滨工程大学 海洋信息获取与安全工业和信息化部重点实验室,哈尔滨 150001
    3.哈尔滨工程大学 水声工程学院,哈尔滨 150001
    4.上海船舶电子设备研究所,上海 201108
张海刚(1981-),教授,博士生导师,主要从事海洋声场建模与应用研究.
龚李佳,副教授;E-mail:lijia.gong@hrbeu.edu.cn.

收稿日期: 2023-03-03

  修回日期: 2023-05-06

  录用日期: 2023-06-16

  网络出版日期: 2023-07-03

基金资助

国家自然科学基金(11904292);国家自然科学基金(12174048)

Depth Distribution Characteristics of Particle Velocity Field Intensity in Shallow Sea

  • ZHANG Haigang ,
  • XIE Jinhuai ,
  • LIU Jiaqi ,
  • GONG Lijia ,
  • LI Zhi
Expand
  • 1. National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China
    2. Key Laboratory of Marine Information Acquisition and Security of the Ministry of Industry and Information Technology, Harbin Engineering University, Harbin 150001, China
    3. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China
    4. Shanghai Marine Electronic Equipment Research Institute, Shanghai 201108, China

Received date: 2023-03-03

  Revised date: 2023-05-06

  Accepted date: 2023-06-16

  Online published: 2023-07-03

摘要

质点振速场强度的深度分布特性对水声探测与估计具有重要影响.基于简正波非相干模态和变换到角度积分的近似条件,推导出质点振速的非相干简正波的角度积分形式,避免了本征值和本征函数的复杂计算,并揭示了质点振速强度在声源深度及对称深度具有显著变化特性的物理机理.数值结果表明:非相干质点振速的角度积分解析式可实现快速计算,并可较好地表征出质点振速强度的深度分布特性;同时,由于简正波模态幅度函数的叠加效应,垂直质点振速与水平质点振速的深度分布存在显著差异性;随后,以质点振速强度差为研究对象,分析了水平距离、声源频率、声速剖面及海水深度等参数对质点振速场强度的深度分布特性的影响.相关结论可为基于矢量场的被动目标深度估计提供理论依据.

本文引用格式

张海刚 , 谢金怀 , 刘佳琪 , 龚李佳 , 李智 . 浅海质点振速场强度的深度分布特性[J]. 上海交通大学学报, 2024 , 58(7) : 995 -1005 . DOI: 10.16183/j.cnki.jsjtu.2023.073

Abstract

The depth distribution characteristics of particle velocity field intensity have had a significant impact on underwater acoustic detection and estimation. In this paper, based on the approximate conditions of the incoherent normal modes sum transformation to angular integration, the angular integration form of incoherent normal modes of particle velocity was derived, which avoided the complex calculations of eigenvalues and eigenfunctions while revealing the physical mechanism behind the significant variations in particle velocity intensity with source depth and symmetrical depth. The numerical results demonstrate that the analytical expression of the angular integration of incoherent particle velocity can facilitate fast computation and effectively characterize the depth distribution characteristics of particle velocity intensity. Additionally, due to the superposition effect of the amplitude function of normal modes, there are notable differences in the depth distribution of vertical and horizontal particle velocity. Subsequently, focusing on the intensity difference of particle velocity, the study analyzed the effects of parameters such as horizontal distance, source frequency, sound speed profile, and water depth on the depth distribution characteristics of particle velocity field intensity. The findings provide a theoretical basis for passive target depth estimation based on vector fields.

参考文献

[1] WESTON D E. Acoustic flux formulas for range-dependent ocean ducts[J]. The Journal of the Acoustical Society of America, 1980, 68(1): 269-281.
[2] WESTON D E. Wave-theory peaks in range-averaged channels of uniform sound velocity[J]. The Journal of the Acoustical Society of America, 1980, 68(1): 282-286.
[3] WESTON D E. Acoustic flux methods for oceanic guided waves[J]. The Journal of the Acoustical Society of America, 1980, 68(1): 287-296.
[4] FERLA C, PORTER M B. Receiver depth selection for passive sonar systems[J]. IEEE Journal of Oceanic Engineering, 1991, 16(3): 267-278.
[5] GERSHFELD D A, INGENITO F. Optimum depth of propagation in shallow water[R]. Washington, USA: Naval Research Laboratory, 1983.
[6] AN S, LEE K, SEONG W. Optimal operating depth search for active towed array sonar using simulated annealing[J]. Defence Science Journal, 2019, 69(4): 415-419.
[7] 王晓宇, 杨益新. 浅海波导中水平时反线列阵布放深度选择研究[J]. 声学技术, 2012, 31(3): 258-264.
  WANG Xiaoyu, YANG Yixin, Deployed depth selection of horizontal time reversal line array in shallow water waveguide[J]. Technical Acoustics, 2012, 31(3): 258-264.
[8] 范培勤, 笪良龙, 晋朝勃, 等. 浅海中声纳系统最优工作深度选择研究[J]. 声学技术, 2011, 30(3): 46-48.
  FAN Peiqin, DA Lianglong, JIN Chaobo, et al. Research on the best depth selection for sonar systems in shallow sea[J]. Technical Acoustics, 2011, 30(3): 46-48.
[9] 窦雨芮, 周其斗, 纪刚, 等. 声速剖面主导的浅海声传播最佳深度规律研究[J]. 中国舰船研究, 2020, 15(5): 102-113.
  DOU Yurui, ZHOU Qidou, JI Gang, et al. Study on the influence of sound speed profiles on the optimum depth of shallow water acoustic propagation[J]. Chinese Journal of Ship Research, 2020, 15(5): 102-113.
[10] HARRISON C H. Ray convergence in a flux-like propagation formulation[J]. The Journal of the Acoustical Society of America, 2013, 133(6): 3777-3789.
[11] SERTLEK H O, AINSLIE M A. A depth-dependent formula for shallow water propagation[J]. The Journal of the Acoustical Society of America, 2014, 136(2): 573-582.
[12] SERTLEK H O, AINSLIE M A, HEANEY K D. Analytical and numerical propagation loss predictions for gradually range-dependent isospeed waveguides[J]. IEEE Journal of Oceanic Engineering, 2019, 44(4): 1240-1252.
[13] DAHL P H, DALL’OSTO D R. Estimation of seabed properties and range from vector acoustic observations of underwater ship noise[J]. The Journal of the Acoustical Society of America, 2020, 147(4): EL345-EL350.
[14] PENG H S, LI F H. Geoacoustic inversion based on a vector hydrophone array[J]. Chinese Physics Letters, 2007, 24(7): 1977-1980.
[15] 祝捍皓, 郑广学, 张海刚, 等. 浅海环境下低频声信号传播特性研究[J]. 上海交通大学学报, 2017, 51(12): 1464-1472.
  ZHU Hanhao, ZHENG Guangxue, ZHANG Haigang, et al. Study on propagation characteristics of low frequency acoustic signal in shallow water environment[J]. Journal of Shanghai Jiao Tong University, 2017, 51(12): 1464-1472.
[16] 张海刚, 杨士莪, 朴胜春, 等. 声矢量场计算方法[J]. 哈尔滨工程大学学报, 2010, 31(4): 470-475.
  ZHANG Haigang, YANG Shi’e, PIAO Shengchun, et al. A method for calculating an acoustic vector field[J]. Journal of Harbin Engineering University, 2010, 31(4): 470-475.
[17] 马树青, 任群言, 朴胜春, 等. 声矢量场的抛物方程计算方法[J]. 哈尔滨工程大学学报, 2009, 30(7): 775-780.
  MA Shuqing, REN Qunyan, PIAO Shengchun, et al. Vector acoustic field calculation using the parabolic equation method[J]. Journal of Harbin Engineering University, 2009, 30(7): 775-780.
[18] AINSLIE M A. Principles of sonar performance modeling[M]. Chichester, UK: Praxis Publishing, 2010: 33-36.
[19] 彭汉书. 浅海声场矢量物理特性及应用研究[D]. 北京: 中国科学院声学研究所, 2007.
  PENG Hanshu. Research on physics properties and application of the acoustic vector in shallow water[D]. Beijing: The Institute of Acoustics of the Chinese Academy of Sciences, 2007.
[20] 张仁和. 水下声道中的平滑平均声场[J]. 声学学报, 1979(2):102-108.
  ZHANG Renhe. Smooth-averaged sound field in underwater sound channel[J]. Acta Acustica, 1979(2): 102-108.
[21] WESTON D E. A moire fringe analog of sound propagation in shallow water[J]. The Journal of the Acoustical Society of America, 1960, 32: 647-654.
[22] CHAPMAN D M, WARD P D, ELLIS D D. The effective depth of a Pekeris ocean waveguide, including shear wave effects[J]. The Journal of the Acoustical Society of America, 1989, 85: 648-653.
[23] TINDLE C T, WESTON D E. Connection of acoustic beam displacement, cycle distances and attenuations for rays and normal modes[J]. The Journal of the Acoustical Society of America, 1980(67): 1614-1622.
[24] MORSE P M, FESHBACH H. Methods of theoretical physics[M]. New York, USA: McGraw-Hill, 1953: 1092-1100.
[25] PORTER M B. The KRAKEN normal mode program[M]. La Spezia, Italy: Saclant Undersea Research Centre, 2001: 69-158.
文章导航

/