收稿日期: 2023-04-17
修回日期: 2023-05-19
录用日期: 2023-06-19
网络出版日期: 2023-07-03
Design and Optimization of New Two-Pole Line-Start Permanent Magnet Synchronous Motor for Pump
Received date: 2023-04-17
Revised date: 2023-05-19
Accepted date: 2023-06-19
Online published: 2023-07-03
为提高带泵类负载异步起动电机的牵入同步能力,提出一种转子导条非均匀分布的新型异步起动电机转子拓扑结构.通过将非均匀分布的转子导条与内置的永磁体组合,形成具有多层磁通屏障的转子结构,增大转子凸极比,提高电机的牵入同步能力.基于有限元方法对传统结构电机和新型结构电机的空载反电势、起动能力、牵入同步能力、稳态电磁转矩、退磁、应力场和温度场分布等进行综合对比分析.结果表明,与传统转子结构相比,新型转子结构有效地提高了电机的牵入同步能力及额定工况下的效率和功率因数.最后,制作样机并搭建了实验平台,验证了仿真结果和理论分析的正确性.
关键词: 异步起动永磁同步电机; 非均匀分布; 牵入同步能力; 温度场分布
刘城 , 王晓光 , 尹浩 , 章国光 , 熊昌 . 泵用新型两极异步起动永磁同步电机的设计与优化[J]. 上海交通大学学报, 2024 , 58(12) : 1977 -1987 . DOI: 10.16183/j.cnki.jsjtu.2023.143
Line-start permanent magnet synchronous motor (LSPMSM) has a great application potential in the field of water pump due to its self-starting ability, high efficiency, and high power factor. In order to improve the transient performance of the motor with pump load, a new type of asynchronous starting motor rotor topology with non-uniform distribution of rotor bar is proposed. By combining the non-uniform distribution of rotor bar with the built-in permanent magnet into a multi-layer magnetic flux barrier rotor structure, the rotor salient ratio is increased, and the pull-in synchronization ability of the motor is improved. Based on the finite element method, the no-load back EMF, starting ability, pull-in synchronization ability, steady-state electromagnetic torque, demagnetization, stress field, and temperature field distribution of the traditional structure motor and the new structure motor are comprehensively compared and analyzed. The results show that compared with the traditional rotor structure, the new rotor structure effectively improves the pull-in synchronization ability, the efficiency, and the power factor of the motor under rated operating conditions. Finally, a prototype is made and an experimental platform is built to verify the correctness of the simulation results and theoretical analysis.
[1] | MARAABA L S, MILHEM A S, NEMER I A, et al. Convolutional neural network-based inter-turn fault diagnosis in LSPMSMs[J]. IEEE Access, 2020, 8: 81960-81970. |
[2] | FONSECA D S B, SANTOS C M C, CARDOSO A J M. Stator faults modeling and diagnostics of line-start permanent magnet synchronous motors[J]. IEEE Transactions on Industry Applications, 2020, 56(3): 2590-2599. |
[3] | HU Y, CHEN B, XIAO Y, et al. Study on the influence of design and optimization of rotor bars on parameters of a line-start synchronous reluctance motor[J]. IEEE Transactions on Industry Applications, 2020, 56(2): 1368-1376. |
[4] | 田蒙蒙. 新型变极起动永磁同步电动机的研究[D]. 济南: 山东大学, 2019. |
TIAN Mengmeng. Study on novel pole-changing line-start permanent magnet synchronous motor[D]. Jinan: Shandong University, 2019. | |
[5] | 田蒙蒙, 王秀和, 王道涵, 等. 新型变极起动永磁同步电动机的参数计算及转矩分析[J]. 中国电机工程学报, 2017, 37(24): 7318-7327. |
TIAN Mengmeng, WANG Xiuhe, WANG Daohan, et al. Calculation of parameters and analysis of torques for a novel pole changing line-start permanent magnet synchronous motor[J]. Proceedings of the CSEE, 2017, 37(24): 7318-7327. | |
[6] | LIU H C, LEE J. Optimum design of an IE4 line-start synchronous reluctance motor considering manufacturing process loss effect[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3104-3114. |
[7] | SHAIKH M F, PARK J, LEE S B. A non-intrusive leakage flux based method for detecting rotor faults in the starting transient of salient pole synchronous motors[J]. IEEE Transactions on Energy Conversion, 2021, 36(2): 1262-1270. |
[8] | PALANGAR M F, SOONG W L, BIANCHI N, et al. Design and optimization techniques in performance improvement of line-start permanent magnet synchronous motors: A review[J]. IEEE Transactions on Magnetics, 2021, 57(9): 900214. |
[9] | YAN B, YANG Y B, WANG X H. Design of a large capacity line-start permanent magnet synchronous motor equipped with hybrid salient rotor[J]. IEEE Transactions on Industrial Electronics, 2021, 68(8): 6662-6671. |
[10] | MAHDAVI F, ALIABAD A D, AMIRI E, et al. Dual-pole line start synchronous machine with consequent-magnetic poles[J]. IEEE Transactions on Energy Conversion, 2020, 35(3): 1648-1657. |
[11] | LIN M X, LI D W, REN X, et al. Line-start vernier permanent magnet machines[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 3707-3718. |
[12] | WAHEED A, RO J. Analytical modeling for optimal rotor shape to design highly efficient line-start permanent magnet synchronous motor[J]. IEEE Access, 2020, 8: 145672-145686. |
[13] | PALANGAR M F, MAHMOUDI A, KAHOURZADE S, et al. Optimum design of line-start permanent-magnet synchronous motor using mathematical method[C]// 2020 IEEE Energy Conversion Congress and Exposition. Detroit, MI, USA: IEEE, 2020: 2064-2071. |
[14] | PECHO J, HOFMANN W. Analysis of the effects of parameter variations on the start-up characteristics of LSPMSM[C]// 2019 21st European Conference on Power Electronics and Applications. Genova, Italy: IEEE, 2019: P.1-P.10. |
[15] | PALANGAR M F, MAHMOUDI A, KAHOURZADE S, et al. Electromagnetic and thermal analysis of a line-start permanent-magnet synchronous motor[C]// 2020 IEEE Energy Conversion Congress and Exposition. Detroit, MI, USA: IEEE, 2020: 502-508. |
[16] | WYMEERSCHL B, DE BELIE F, RASMUSSEN C B, et al. The effect of design considerations on the synchronization capability limits of line-start permanent-magnet synchronous motors[C]// 2018 XIII International Conference on Electrical Machines. Alexandroupoli, Greece: IEEE, 2018: 988-994. |
[17] | HEO C, KIM H, PARK G. A design of rotor bar inclination in squirrel cage induction motor[C]// 2017 IEEE International Magnetics Conference. Dublin, Ireland: IEEE, 2017: 8007748. |
[18] | BAKA S, SASHIDHAR S, FERNANDES B G. Design and optimization of a two-pole line-start ferrite assisted synchronous reluctance motor[C]// 2018 XIII International Conference on Electrical Machines. Alexandroupoli, Greece: IEEE, 2018: 131-137. |
[19] | BAKA S, SASHIDHAR S, FERNANDES B G. Design of an energy efficient line-start two-pole ferrite assisted synchronous reluctance motor for water pumps[J]. IEEE Transactions on Energy Conversion, 2021, 36(2): 961-970. |
[20] | 田蒙蒙, 王秀和, 李昌. 新型6/8变极起动永磁同步电动机绕组切换动态过程的研究[J]. 中国电机工程学报, 2018, 38(3): 909-917. |
TIAN Mengmeng, WANG Xiuhe, LI Chang. Research on the dynamic process of winding switching for a novel 6/8 pole changing line-start permanent magnet synchronous motor[J]. Proceedings of the CSEE, 2018, 38(3): 909-917. | |
[21] | HASSANPOUR ISFAHANI A, VAEZ-ZADEH S. Line start permanent magnet synchronous motors: Challenges and opportunities[J]. Energy, 2009, 34(11): 1755-1763. |
[22] | SHEHATA E G. Design tradeoffs between starting and steady state performances of line-started interior permanent magnet synchronous motor[C]// 7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014). Manchester, UK: Institution of Engineering and Technology, 2014: 1-6. |
[23] | 李岩, 闫佳宁, 夏加宽. 基于Fluent的异步起动永磁电机温度场分析[J]. 电气工程学报, 2015, 10(9): 15-21. |
LI Yan, YAN Jianing, XIA Jiakuan. Temperature field analysis of line-start asynchronous permanent magnet motor based on fluent[J]. Journal of Electrical Engineering, 2015, 10(9): 15-21. |
/
〈 |
|
〉 |