新型电力系统与综合能源

等效电路模型法预测动态工况下微型直接甲醇燃料电池剩余使用寿命

  • 苏雨临 ,
  • 连冠 ,
  • 张大骋
展开
  • 1.昆明理工大学 信息工程与自动化学院,昆明 650500
    2.云南省建筑工程设计院有限公司,昆明 650000
    3.云南省绿色能源与数字电力量测及控保重点实验室,昆明 650500
苏雨临(1998—),硕士生,从事燃料电池可靠性研究.
张大骋,副教授;E-mail:dacheng.zhang@kust.edu.cn.

收稿日期: 2023-03-03

  修回日期: 2023-04-24

  录用日期: 2023-05-29

  网络出版日期: 2023-06-06

基金资助

国家自然科学基金(62103174);云南省应用基础研究计划(202201AT070107)

Equivalent Circuit Model-Based Prognostics for Micro Direct Methanol Fuel Cell Under Dynamic Operating Conditions

  • SU Yulin ,
  • LIAN Guan ,
  • ZHANG Dacheng
Expand
  • 1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
    2. Yunnan Architectural Engineering Design Co., Ltd., Kunming 650000, China
    3. Yunnan Key Laboratory of Green Energy, Electric Power Measurement Digitalization, Control and Protection, Kunming 650500, China

Received date: 2023-03-03

  Revised date: 2023-04-24

  Accepted date: 2023-05-29

  Online published: 2023-06-06

摘要

微型直接甲醇燃料电池(μDMFC)具有能量密度高、可便携使用、快速补能以及环境友好等优点.然而,由于膜电极在电化学反应中会退化,μDMFC的有效使用寿命有限,所以需要对其健康状态与剩余使用寿命进行评估,为燃料电池改性和控制策略提供决策支持.在结合数据驱动和机理模型预测方法的基础上,针对动态运行工况,提出一种基于等效电路模型(ECM)的μDMFC剩余使用寿命预测方法.在燃料电池的性能退化指标中,电池输出电压可以被实时监测从而获得电池的退化趋势,但这一指标无法单独提供精确的预测结果.通过测量电化学阻抗谱并结合ECM可以得到电池内部阻抗等深层信息,但这些深层信息不易被实时监测,通常只能低频离线测量.此外,燃料电池在实际应用中多处于变工况状态,其退化趋势和使用寿命受工作环境影响,传统基于电压退化趋势回归的预测方法无法应对工况的动态变化.因此,可通过定期离线获取内部退化参量建立预测模型.实验结果表明:与传统数据驱动的方法相比,基于内部退化参量的预测方法能更好地适应变工况环境,在燃料电池剩余使用寿命预测中具有更好的性能.

本文引用格式

苏雨临 , 连冠 , 张大骋 . 等效电路模型法预测动态工况下微型直接甲醇燃料电池剩余使用寿命[J]. 上海交通大学学报, 2024 , 58(10) : 1575 -1584 . DOI: 10.16183/j.cnki.jsjtu.2023.072

Abstract

Micro direct methanol fuel cell (μDMFC) has the advantages of high energy density, portable use, fast replenishment, and eco-friendliness. However, the practical service life of μDMFC is often limited due to the deterioration of membrane electrode assembly in electrochemical reaction. Therefore, it is necessary to evaluate the health status and remaining useful life (RUL) of the cell to provide decision-making support for fuel cell characteristic modification and control strategy. Considering the pros and cons of data-driven and model-based methods, an RUL prediction method for μDMFC based on equivalent circuit model (ECM) is proposed. Among the degradation indicators of μDMFC, the cell output voltage can be monitored in real time to obtain the degradation trend. However, this indicator cannot provide accurate prediction results alone under dynamic operating conditions. Deeper-level information, such as the internal impedance, can be obtained by investigating the electrochemical impedance spectroscopy (EIS), but such in-depth information is difficult to be monitored in real time and can only be measured offline at low frequencies. Moreover, fuel cells are usually under dynamic operating conditions in practical applications, so their degradation and service life are affected by the operating conditions. Traditional output voltage regression-based prediction methods cannot cope with dynamic changes in operation. Therefore, the prediction model can be built through scheduled offline measurement of internal degradation indicators. The experimental results show that, compared with the traditional data-driven method, the prediction method based on the internal EIS characterization can better adapt to the variable operating conditions and has a superior performance in RUL predictions.

参考文献

[1] LIU J X, GAO Y B, SU X J, et al. Disturbance-observer-based control for air management of PEM fuel cell systems via sliding mode technique[J]. IEEE Transactions on Control Systems Technology, 2019, 27(3): 1129-1138.
[2] ESMAEILI N, GRAY E M, WEBB C J. Non-fluorinated polymer composite proton exchange membranes for fuel cell applications—A review[J]. Chemphyschem: A European Journal of Chemical Physics & Physical Chemistry, 2019, 20(16): 2016-2053.
[3] RAMEZANIZADEH M, ALHUYI NAZARI M, HOSSEIN AHMADI M, et al. A review on the approaches applied for cooling fuel cells[J]. International Journal of Heat & Mass Transfer, 2019, 139: 517-525.
[4] THOMPSON S T, JAMES B D, HUYA-KOUADIO J M, et al. Direct hydrogen fuel cell electric vehicle cost analysis: System and high-volume manufacturing description, validation, and outlook[J]. Journal of Power Sources, 2018, 399: 304-313.
[5] LI X L, XIE C J, QUAN S H, et al. Energy management strategy of thermoelectric generation for localized air conditioners in commercial vehicles based on 48 V electrical system[J]. Applied Energy, 2018, 231: 887-900.
[6] DUBAU L, CASTANHEIRA L, MAILLARD F, et al. A review of PEM fuel cell durability: Materials degradation, local heterogeneities of aging and possible mitigation strategies[J]. Wiley Interdisciplinary Reviews: Energy & Environment, 2014, 3(6): 540-560.
[7] ROBIN C, GéRARD M, QUINAUD M, et al. Proton exchange membrane fuel cell model for aging predictions: Simulated equivalent active surface area loss and comparisons with durability tests[J]. Journal of Power Sources, 2016, 326: 417-427.
[8] ZHU L, CHEN J. Prognostics of PEM fuel cells based on Gaussian process state space models[J]. Energy, 2018, 149: 63-73.
[9] 路凯. 质子交换膜燃料电池动态响应特性分析及寿命预测研究[D]. 北京: 北京交通大学, 2020.
  LU Kai. Dynamic response analysis and life prediction of proton exchange membrane fuel cell[D]. Beijing: Beijing Jiaotong University, 2020.
[10] WU Y M, BREAZ E, GAO F, et al. A modified relevance vector machine for PEM fuel-cell stack aging prediction[J]. IEEE Transactions on Industry Applications, 2016, 52(3): 2573-2581.
[11] WANG M H, TSAI H H. Fuel cell fault forecasting system using grey and extension theories[J]. IET Renewable Power Generation, 2012, 6(6): 373-380.
[12] LU H X, CHEN J, YAN C Z, et al. On-line fault diagnosis for proton exchange membrane fuel cells based on a fast electrochemical impedance spectroscopy measurement[J]. Journal of Power Sources, 2019, 430: 233-243.
[13] ZHANG D, BARALDI P, CADET C, et al. An ensemble of models for integrating dependent sources of information for the prognosis of the remaining useful life of proton exchange membrane fuel cells[J]. Mechanical Systems & Signal Processing, 2019, 124: 479-501.
[14] 薛瑞. 微型直接甲醇燃料电池高浓度传质阻挡层技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
  XUE Rui. Research on mass transfer barrier layer of concentrated direct methanol fuel cell[D]. Harbin: Harbin Institute of Technology, 2019.
[15] 靖春胜, 张铁臣, 于镒隆, 等. 基于NEDC和WLTC工况循环的混合动力汽车排放特性研究[J]. 河北工业大学学报, 2021, 50(4): 51-56.
  JING Chunsheng, ZHANG Tiechen, YU Yilong, et al. Study on emission characteristics of hybrid electric vehicle based on NEDC and WLTC working cycle[J]. Journal of Hebei University of Technology, 2021, 50(4): 51-56.
[16] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[17] GUO Q Z, CAYETANO M, TSOU Y M, et al. Study of ionic conductivity profiles of the air cathode of a PEMFC by AC impedance spectroscopy[J]. Journal of the Electrochemical Society, 2003, 150(11): A1440.
[18] S?RENSEN T S, KJELSTRUP S. A simple maxwell-wagner-butler-volmer approach to the impedance of the hydrogen electrode in a nafion fuel cell[J]. Journal of Colloid & Interface Science, 2002, 248(2): 355-375.
[19] PASTOR-FERNáNDEZ C, DHAMMIKA WIDANAGE W, MARCO J, et al. Identification and quantification of ageing mechanisms in Lithium-ion batteries using the EIS technique[C]// 2016 IEEE Transportation Electrification Conference & Expo. Dearborn, USA: IEEE, 2016: 1-6.
[20] 张少哲, 戴海峰, 袁浩, 等. 质子交换膜燃料电池电化学阻抗谱敏感性研究[J]. 机械工程学报, 2021, 57(14): 40-51.
  ZHANG Shaozhe, DAI Haifeng, YUAN Hao, et al. Sensibility study on electrochemical impedance of proton exchange membrane fuel cell[J]. Journal of Mechanical Engineering, 2021, 57(14): 40-51.
[21] 鲜亮, 肖建, 贾俊波. 质子交换膜燃料电池交流阻抗谱实验研究[J]. 中国电机工程学报, 2010, 30(35): 101-106.
  XIAN Liang, XIAO Jian, JIA Junbo. An experimental study on AC impedance spectroscopy of proton exchange membrane fuel cell[J]. Proceedings of the CSEE, 2010, 30(35): 101-106.
[22] 郭建伟, 毛宗强, 徐景明. 采用交流阻抗法对质子交换膜燃料电池(PEMFC)电化学行为的研究[J]. 高等学校化学学报, 2003, 24(8): 1477-1481.
  GUO Jianwei, MAO Zongqiang, XU Jingming. Studies on the electrochemical behavior of polymer electrolyte membrane fuel cell (PEMFC) by AC impedance method[J]. Chemical Research in Chinese Universities, 2003, 24(8): 1477-1481.
文章导航

/