机械与动力工程

基于组合边界条件的固体材料热扩散系数测试方法

展开
  • 1.安徽理工大学 机械工程学院,安徽 淮南 232001
    2.安徽理工大学 环境友好材料与职业健康研究院, 安徽 芜湖 241003
    3.安徽理工大学 矿山智能装备与技术省重点实验室,安徽 淮南 232001
陈清华(1978-),教授,从事材料热物性、传热传质学等领域的研究; E-mail: ahhnds@163.com.

收稿日期: 2023-01-16

  修回日期: 2023-04-12

  录用日期: 2023-05-22

  网络出版日期: 2023-06-06

基金资助

国家自然科学基金(52175070);安徽理工大学环境友好材料与职业健康研究院研发专项基金(ALW2021YF12)

Testing Method for Thermal Diffusivity of Solid Materials Based on Combined Boundary Conditions

Expand
  • 1. School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
    2. Environmental Friendly Materials and Occupational Health Research Institute, Anhui University of Science and Technology, Wuhu 241003, Anhui, China
    3. Key Laboratory of Mine Intelligent Equipment and Technology, Anhui University of Science and Technology, Huainan 232001, Anhui, China

Received date: 2023-01-16

  Revised date: 2023-04-12

  Accepted date: 2023-05-22

  Online published: 2023-06-06

摘要

提出了一种组合边界条件下结合传热反问题思想测算固体材料热扩散系数的方法.建立了正问题理论模型,基于有限体积法和交替方向隐式方法的思想利用MATLAB软件对正问题温度场进行数值求解,利用共轭梯度法结合软件编程求解反问题,反演得到材料的热扩散系数.设计了实验方案并搭建了完整的测试系统,利用测试装置对亚克力板(PMMA)、硼硅玻璃(Pyrex7740)、大理石3种材料进行了综合实验,结果表明导热系数测试结果与文献值的最大相对偏差为3.45%,小于5%,验证了测试方法和装置的可行性与准确性.进一步对PMMA热扩散系数实验的不确定度进行了分析,得到扩展不确定度为4.86%,处于较低水平,说明实验数据可靠,测试方法科学.

本文引用格式

陈清华, 吴佳乐, 陆育, 季家东, 刘萍 . 基于组合边界条件的固体材料热扩散系数测试方法[J]. 上海交通大学学报, 2024 , 58(8) : 1201 -1210 . DOI: 10.16183/j.cnki.jsjtu.2023.018

Abstract

A method for measuring the thermal diffusivity of solid materials under combined boundary conditions in combination with the idea of inverse heat transfer problem is proposed. Based on the idea of the finite volume method and the alternating direction implicit method, MATLAB software is used to numerically solve the temperature field of the forward problem. The conjugate gradient method in combination with software programming is used to solve the inverse problem, and the thermal diffusion coefficient of the material is obtained by inversion. Based on the test principle, an experimental scheme is designed and a complete test system is built. The structure design, selection, and machining of the device equipment for constructing three types of boundary conditions and collecting temperature data are performed. The main program of each functional module of the software part is programmed and debugged in LabVIEW software. The comprehensive experiments of acrylic plate (PMMA), borosilicate glass (Pyrex7740) and marble are conducted by using the test device. The results show that the maximum relative deviation between the thermal conductivity test results and the literature values is 3.45%, less than 5%, which verifies the feasibility and accuracy of the test method and device. The uncertainty of PMMA thermal diffusion coefficient experiment is further analyzed, and the expanded uncertainty is 4.86%, which is at a low level, indicating that the experimental data are reliable and the test method is scientific.

参考文献

[1] 姚彧敏, 李红, 刘正启, 等. 高导热碳/碳复合材料微观结构及导热性能[J]. 材料工程, 2020, 48(11): 155-161.
  YAO Yumin, LI Hong, LIU Zhengqi, et al. Microstructure and thermal conductivity of high thermal conductivity carbon/carbon composites[J]. Journal of Materials Engineering, 2020, 48(11): 155-161.
[2] PIASECKA M. Correlations for flow boiling heat transfer in minichannels with various orientations[J]. International Journal of Heat and Mass Transfer, 2015, 81: 114-121.
[3] PARKER W J, JENKINS R J, BULTER C P, et al. Flash method of determining thermal diffusivity, heat capacity and thermal conductivity[J]. Journal of Applied Physics, 1961, 32(9): 1679-1684.
[4] 周孑民, 王长宏, 薛正华, 等. 利用周期热流法测定金属材料热物性参数[J]. 武汉理工大学学报, 2005, 27(10): 43-46.
  ZHOU Jiemin, WANG Changhong, XUE Zhenghua, et al. Determination of thermophysical properties of metals by using of periodic heat flow method[J]. Journal of Wuhan University of Technology, 2005, 27(10): 43-46.
[5] LAGüELA S, BISON P, PERON F, et al. Thermal conductivity measurements on wood materials with transient plane source technique[J]. Thermochimica Acta, 2015, 600: 45-51.
[6] HU Y, FAN A, LIU J, et al. A dual-wavelength flash Raman method for simultaneously measuring thermal diffusivity and line thermal contact resistance of an individual supported nanowire[J]. Thermochimica Acta, 2019, 81(3): 683-685.
[7] 于帆, 张欣欣. 脉冲式平面热源法测量材料热导率和热扩散率的分析与实验[J]. 化工学报, 2019, 70(z2): 70-75.
  YU Fan, ZHANG Xinxin. Analysis and experiment of measuring thermal conductivity and diffusivity of materials by plane source-pulse transient method[J]. CIESC Journal, 2019, 70(z2): 70-75.
[8] CERNUSCHI F, BISON P G, FIGARI A, et al. Thermal diffusivity measurements by photothermal and thermographic techniques[J]. International Journal of Thermophysics, 2004, 25(2): 439-457.
[9] DONG H, ZHENG B, CHEN F. Infrared sequence transformation technique for in situmeasurement of thermal diffusivity and monitoring of thermal diffusion[J]. Infrared Physics & Technology, 2015, 73: 130-140.
[10] 韩雯雯, 吴健, 刘长亮, 等. 基于导热反问题的二维圆管内壁面第三类边界条件的反演[J]. 机械工程学报, 2015(16): 171-176.
  HAN Wenwen, WU Jian, LIU Changliang, et al. Inversion of the third boundary condition on the inner wall of a two-dimensional pipe based on the inverse heat conduction problems[J]. Journal of Mechanical Engineering, 2015(16): 171-176.
[11] 杨秋足. 组合热边界下二维梯度板平面稳态温度场分析[D]. 邯郸: 河北工程大学, 2017.
  YANG Qiuzu. Steady state temperature field analysis of two-dimensional gradient plate under combined thermal boundaries[D]. Handan: Hebei University of Engineering, 2017.
[12] MATTIA B, HAIPENG L, HENRYK A. An iterative finite-element algorithm for solving two-dimensional nonlinear inverse heat conduction problems[J]. International Journal of Heat and Mass Transfer, 2018, 126: 281-292.
[13] DAI J P, CAO Z W, DU S, et al. An inverse analysis to estimatethe thermal properties of nanoporous aerogel composites using the particle swarm optimized deep neuralnetwork[J]. Numerical Heat Transfer, 2023, 84(6): 667-688.
[14] 王强. 基于保护平面热源法的隔热材料热物性测量技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
  WANG Qiang. Research on thermal property measurement technology of insulation materials based on the protection of plane heat source method[D]. Harbin:Harbin Institute of Technology, 2009.
[15] 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006.
  YANG Shiming, TAO Wenquan. Heat transfer[M]. Beijing: Higher Education Press, 2006.
[16] 陶文铨. 数值传热学[M]. 第2版. 西安: 西安交通大学出版社, 2001.
  TAO Wenquan. Numerical heat transfer[M]. 2nd ed. Xi’an: Xi’an Jiaotong University Press, 2001.
[17] HELMIG T, AL-SIBAI F, KNEER R. Estimating sensor number and spacing for inverse calculation of thermal boundary conditions using the conjugate gradient method[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119638.
[18] 陈树学, 刘萱. LabVIEW宝典[M]. 北京: 电子工业出版社, 2011.
  CHEN Shuxue, LIU Xuan. LabVIEW dictionary[M]. Beijing: Electronic Industry Press, 2011.
[19] 胡芃, 陈则韶. 量热技术和热物性测定[M]. 合肥: 中国科学技术大学出版社, 2009: 108-111.
  HU Peng, CHEN Zeshao. Calorimetric technique and thermophysical property measurement[M]. Hefei: China University of Science and Technology Press, 2009: 108-111.
[20] KREVELEN D W. Properties of polymers[M]. Amsterdam, Netherlands: Elsevier, 2009: 94-96.
[21] 马燕, 吴亮, 吕云逸, 等. 松散煤体热扩散率测试不确定度分析[J]. 煤炭技术, 2016(1): 210-212.
  MA Yan, WU Liang, LV Yunyi, et al. Uncertainty analysis of loose coal thermal diffusivity test[J]. Coal Technology, 2016(1): 210-212.
[22] 王新. 合成标准不确定度评定中相关系数的实例分析[J]. 中国计量, 2015(4): 94-96.
  WANG Xin. Example analysis of correlation coefficient in evaluation of uncertainty of composite standard[J]. China Metrology, 2015(4): 94-96.
文章导航

/