船舶海洋与建筑工程

带月池驳船式浮式风力机水动力性能

  • 陈易人 ,
  • 姚靳羽 ,
  • 李明轩 ,
  • 张新曙
展开
  • 1.上海交通大学 海洋工程国家重点实验室
    2.高新船舶与深海开发装备协同创新中心,上海 200240
陈易人(1997-),硕士,从事浮式风力机水动力性能研究及系泊设计.
张新曙,研究员,博士生导师,电话(Tel.):021-34208359;E-mail:xinshuz@sjtu.edu.cn.

收稿日期: 2022-12-16

  修回日期: 2023-04-13

  录用日期: 2023-05-16

  网络出版日期: 2023-06-07

基金资助

国家自然科学基金(52171269);上海交通大学深蓝计划(SL2021PT205)

Hydrodynamic Performance of a Barge-Type Floating Offshore Wind Turbine with Moonpool

  • CHEN Yiren ,
  • YAO Jinyu ,
  • LI Mingxuan ,
  • ZHANG Xinshu
Expand
  • 1. State Key Laboratory of Ocean Engineering
    2. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2022-12-16

  Revised date: 2023-04-13

  Accepted date: 2023-05-16

  Online published: 2023-06-07

摘要

参考Ideol-Floatgen相关设计,对带月池驳船式浮式风力机进行频域水动力性能研究,考虑了月池黏性阻尼的修正.首先对月池的共振模态进行分析,计算风力机在规则波下的水动力系数与不规则波下运动响应谱,并结合 DNV 相关规范对风力机的安全性进行了评估.结果表明,在作业工况与生存工况下,浮式风力机的动态纵倾与机舱加速度均符合安全性要求.通过对驳船式浮式风力机运动与月池共振的耦合作用的研究,发现风力机的运动会引起月池活塞共振频率的偏移与活塞共振幅值的减小,晃荡共振的频率基本不受影响,但一阶晃荡共振的幅值会增大.与无月池驳船式浮式风力机相比,月池可以降低风力机整体的运动响应,提升风力机整体的水动力性能.对浮式风力机驳船式平台的边长、月池边长与平台吃水进行参数化分析,将风力机的纵荡、垂荡、纵摇响应均方根(RMS)值与机舱加速度响应RMS值作为对比的指标,发现平台边长的增加可以有效降低风力机在作业工况与生存工况下的4项响应RMS值;月池边长的增加可以大幅降低平台生存工况下的4项响应RMS值;平台吃水的增加可以显著降低风力机在作业工况下的4项响应RMS值,并提高生存工况下的垂荡与纵摇响应RMS值.

本文引用格式

陈易人 , 姚靳羽 , 李明轩 , 张新曙 . 带月池驳船式浮式风力机水动力性能[J]. 上海交通大学学报, 2024 , 58(7) : 965 -982 . DOI: 10.16183/j.cnki.jsjtu.2022.521

Abstract

The hydrodynamic performance of a barge-type floating offshore wind turbine (FOWT) with a moonpool is studied in frequency domain with reference to the Ideol-Floatgen design. The correction of the viscous damping of the moonpool is considered. First, the resonance modes of the moonpool are analyzed. Then, the hydrodynamic coefficients of the FOWT under regular waves and the motion responses under irregular waves are investigated. Finally, the safety of the FOWT is verified with respect to the DNV standards. The results show that the dynamic pitch and nacelle acceleration of the barge-type FOWT meet the safety requirements under both operating and survival conditions. The investigation of the coupling effects of the platform motion and the moonpool resonance shows that the motion of the platform will cause the shift of the piston mode frequency of the moonpool and the reduction of the piston mode response amplitude, the frequency of the sloshing mode is basically unaffected, but the response amplitude of the first-order sloshing mode is increased. The motion responses of the barge-type FOWT with and without the moonpool are compared. It is found that the moonpool can reduce the motion response of the FOWT, and improve the overall hydrodynamic performance of the FOWT. The platform length, moonpool length and platform draught are parametrically analyzed. Surge, heave, pitch response RMS values and the nacelle acceleration response RMS value are used as the indicators of comparison. It is found that the increase of the platform length could effectively reduce the four response RMS values of the FOWT under both operating and survival conditions, the increase of the moonpool length will reduce the four response RMS values of the FOWT under the operating condition, and the increase of the platform draught could significantly reduce the four response RMS values of the FOWT under the survival condition, the heave and pitch response RMS values increase with the augmentation of the draught under the operating condition.

参考文献

[1] 周昊, 侯承宇, 李辉, 等. 我国海域漂浮式风电机组基础适用性分析[J]. 风能, 2020(7): 102-105.
  ZHOU Hao, HOU Chengyu, LI Hui, et al. Applicability analysis of floating wind turbine foundation in China’s sea areas[J]. Wind Energy, 2020(7): 102-105.
[2] 国家发改委能源研究所. 中国2030年风电发展展望[R]. 北京: 国家发改委能源研究所, 2010.
  National Development and Reform Commission Energy Research Institute. China’s wind power development outlook 2030[R]. Beijing: National Development and Reform Commission Energy Research Institute, 2010.
[3] JONKMAN J M. Dynamics modeling and loads analysis of an offshore floating wind turbine[R]. USA: Dissertations & Theses-Gradworks, 2007.
[4] BROWNING J R, JONKMAN J, ROBERTSON A, et al. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool[J]. Journal of Physics: Conference Series, 2014, 555: 012015.
[5] LEE S. Dynamic response analysis of spar buoy floating wind turbine systems[D]. USA: Massachusetts Institute of Technology, 2008.
[6] TRACY C. Parametric design of floating wind turbines[D]. USA: Massachusetts Institute of Technology, 2007.
[7] KVITTEM M I, BACHYNSKI E E, MOAN T. Effects of hydrodynamic modelling in fully coupled simulations of a semi-submersible wind turbine[J]. Energy Procedia, 2012, 24: 351-362.
[8] 张洪建, 蔡新, 许波峰. 浮式风机半潜式平台动力响应研究[J]. 可再生能源, 2021, 39(9): 1210-1216.
  ZHANG Hongjian, CAI Xin, XU Bofeng. Study on dynamic response of floating wind turbine semi-submersible platform[J]. Renewable Energy Resources, 2021, 39(9): 1210-1216.
[9] 刘一鸣, 王博, 刘青松, 等. 风浪异向下超大型漂浮式风力机动态响应研究[J]. 机械强度, 2022, 44(2): 383-393.
  LIU Yiming, WANG Bo, LIU Qingsong, et al. Research on dynamic response of super large floating wind turbine under wind-wave misalignment[J]. Journal of Mechanical Strength, 2022, 44(2): 383-393.
[10] 魏东泽, 阙小玲, 付图南, 等. 新型半潜式海上风力机基础水动力特性研究[J]. 海洋工程, 2022, 40(1): 82-92.
  WEI Dongze, QUE Xiaoling, FU Tunan, et al. Research on hydrodynamic characteristics of a new semi-submersible floating foundation for offshore wind turbine[J]. The Ocean Engineering, 2022, 40(1): 82-92.
[11] 徐添, 张庆年, 田依农, 等. 15MW级大型漂浮式风力机运动特性[J]. 船舶工程, 2022(2): 044.
  XU Tian, ZHANG Qingnian, TIAN Yinong, et al. Motion characteristics of 15 MW large floating wind turbine[J]. Ship Engineering, 2022(2): 044.
[12] BEYER F, CHOISNET T, KRETSCHMER M, et al. Coupled MBS-CFD simulation of the IDEOL floating offshore wind turbine foundation compared to wave tank model test data[C]//International Ocean and Polar Engineering Conference. Hawaii, USA: International Society of Offshore and Polar Engineers, 2015.
[13] BORISADE F, CHOISNET T, CHENG P W. Design study and full scale MBS-CFD simulation of the IDEOL floating offshore wind turbine foundation[J]. Journal of Physics: Conference Series, 2016, 753: 092002.
[14] IKOMA T, NAKAMURA M, MORITSU S, et al. Effects of four moon pools on a floating system installed with Twin-VAWTs[C]ASME 2019 2nd International Offshore Wind Technical Conference. St. Julian’s, Malta: American Society of Mechanical Engineers, 2019.
[15] TAN L, IKOMA T, AIDA Y, et al. Mean wave drift forces on a barge-type floating wind turbine platform with moonpools[J]. Journal of Marine Science and Engineering, 2021, 9(7): 709.
[16] 易乾. 南海海域风浪条件下浮式风机动力响应及构型参数研究[D]. 北京: 清华大学, 2017.
  YI Qian. Research on dynamics response and structural properties of floating wind turbines under wind-wave condition in South China Sea[D]. Beijing: Tsinghua University, 2017.
[17] YANG R Y, WANG C W, HUANG C C, et al. The 1∶20 scaled hydraulic model test and field experiment of barge-type floating offshore wind turbine system[J]. Ocean Engineering, 2022, 247: 110486.
[18] CHUANG T C, YANG W H, YANG R Y. Experimental and numerical study of a barge-type FOWT platform under wind and wave load[J]. Ocean Engineering, 2021, 230: 109015.
[19] DNVGL. Loads and site conditions for wind turbine: DNVGL-ST-0437[S]. Norway: DNVGL, 2016.
[20] XU X, ZHANG X, CHU B, et al. On Natural frequencies of three-dimensional moonpool of vessels in the fixed and free-floating conditions[J]. Ocean Engineering, 2020, 195: 106656.
[21] JONKMAN J. Definition of the floating system for phase IV of OC3[R]. Golden, USA: NREL, 2010.
[22] DNVGL. Coupled analysis of floating wind turbines: DNVGL-RP-0286[S]. Norway: DNVGL, 2019.
[23] TRACY C C H. Parametric design of floating wind turbines[D]. Cambridge, USA: Massachusetts Institute of Technology, 2007.
文章导航

/