船舶海洋与建筑工程

水泥基材料孔隙结构随机分散模型与仿真试验

  • 程钕 ,
  • 徐文浩 ,
  • 吴标 ,
  • 陈小文 ,
  • 侯东伟
展开
  • 1.上海交通大学 船舶海洋与建筑工程学院,上海 200240
    2.上海市公共建筑与基础设施数字化运维重点实验室,上海 200240
程 钕(1998—),硕士生,从事水泥基材料孔隙结构研究.
侯东伟,讲师;E-mail:houdw@sjtu.edu.cn.

收稿日期: 2023-02-06

  修回日期: 2023-05-25

  录用日期: 2023-05-29

  网络出版日期: 2023-06-07

Random Dispersion Model and Simulation of Model Pore Structure of Cementitious Materials

  • CHEN Nü ,
  • XU Wenhao ,
  • WU Biao ,
  • CHEN Xiaowen ,
  • HOU Dongwei
Expand
  • 1. School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Shanghai Key Laboratory for Digital Maintenance of Building and Infrastructure, Shanghai 200240, China

Received date: 2023-02-06

  Revised date: 2023-05-25

  Accepted date: 2023-05-29

  Online published: 2023-06-07

摘要

为描述水泥基材料的孔隙结构演变,将水泥浆体看作两相介质随机分散体系,建立了孔隙结构计算模型. 同时采用μic平台进行水泥水化仿真,与理论结果相互验证,并进一步分析理论模型的计算条件和参数变化规律. 计算结果表明:对于完全分散的新拌水泥浆体,多分散硬球模型与仿真结果一致; 考虑水化产物交错和团聚效应,单分散同心球模型计算的孔隙结构与仿真结果一致,且硬核半径比与水化度呈线性负相关. 考虑水泥颗粒絮凝效应时,单分散硬球模型与仿真结果接近.

本文引用格式

程钕 , 徐文浩 , 吴标 , 陈小文 , 侯东伟 . 水泥基材料孔隙结构随机分散模型与仿真试验[J]. 上海交通大学学报, 2024 , 58(11) : 1745 -1752 . DOI: 10.16183/j.cnki.jsjtu.2023.037

Abstract

In order to investigate the evolution of pore structures in cementitious materials, a statistical model is proposed by taking the cement paste as a random dispersion system of two-phase medium. Simultaneously, the μic platform is employed to simulate the cement hydration. The results obtained from the simulation and the disperse models are compared with each other, and further analysis on calculation conditions and parameters of the disperse models are conducted. The pore size distribution obtained from polydisperse hard sphere model is very close to the simulation in completely dispersion condition. Taking into account the cross and agglomeration effects of hydrated products, the calculation results of the monodisperse concentric-shell model are more consistent to the simulations. Considering the flocculation of cement particles in initial state, the monodisperse hard model is closer to the simulation results. This paper offers a new insight from the viewpoints of mathematics and physics to understand and describe the pore structures of cementitious materials.

参考文献

[1] CHINDAPRASIRT P, HOMWUTTIWONG S, SIRIVIVATNANON V. Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar[J]. Cement and Concrete Research, 2004, 34(7): 1087-1092.
[2] HOU D W, LI D Y, HUA P C, et al. Statistical modelling of compressive strength controlled by porosity and pore size distribution for cementitious materials[J]. Cement and Concrete Composites, 2019, 96: 11-20.
[3] ZHANG Y, YE G, YANG Z X. Pore size dependent connectivity and ionic transport in saturated cementitious materials[J]. Construction and Building Materials, 2020, 238: 117680.
[4] 佘安明, 马坤, 王中平, 等. 低场核磁共振低温测孔技术表征硬化水泥浆体孔结构[J]. 建筑材料学报, 2021, 24(5): 916-920.
  SHE Anming, MA Kun, WANG Zhongping, et al. Characterization of pore structure in hardened cement paste by low field NMR cryoporometry[J]. Journal of Building Materials, 2021, 24(5): 916-920.
[5] 谢恩慧, 周春圣. 利用低场磁共振弛豫测孔技术预测水泥基材料的水分渗透率[J]. 硅酸盐学报, 2020, 48(11): 1808-1816.
  XIE Enhui, ZHOU Chunsheng. Prediction of water permeability for cement-based material from the pore size distribution achieved by low-field nuclear magnetic resonance relaxation technique[J]. Journal of the Chinese Ceramic Society, 2020, 48(11): 1808-1816.
[6] SLANI?KA ?. The influence of fly ash fineness on the strength of concrete[J]. Cement and Concrete Research, 1991, 21(2/3): 285-296.
[7] YU A B, STANDISH N. Estimation of the porosity of particle mixtures by a linear-mixture packing model[J]. Industrial & Engineering Chemistry Research, 1991, 30(6): 1372-1385.
[8] ALONSO M, SAINZ E, LOPEZ F A, et al. Void-size probability distribution in random packings of equal-sized spheres[J]. Chemical Engineering Science, 1995, 50(12): 1983-1988.
[9] DODDS J A, LLOYD P J. A model for the void structure in multi-component sphere packs applied to capillary pressure curves[J]. Powder Technology, 1972, 5(2): 69-76.
[10] TORQUATO S. Random heterogeneous materials: microstructure and macroscopic properties[M]. New York: Springer Science, 2002.
[11] BISHNOI S, SCRIVENER K L. μic: A new platform for modelling the hydration of cements[J]. Cement and Concrete Research, 2009, 39(4): 266-274.
[12] LU B L, TORQUATO S. Nearest-surface distribution functions for polydispersed particle systems[J]. Physical Review A, 1992, 45(8): 5530-5544.
[13] RIKVOLD P A, STELL G. D-dimensional interpenetrable-sphere models of random two-phase media: Microstructure and an application to chromatography[J]. Journal of Colloid and Interface Science, 1985, 108(1): 158-173.
[14] BISHNOI S. Vector modelling of hydrating cement microstructure and kinetics[D]. Japan: University of Tokyo, 2008.
[15] MERKUS H G. Particle size measurements: fundamentals, practice, quality[M]. Dordrecht: Springer, 2009.
文章导航

/