收稿日期: 2023-03-09
修回日期: 2023-05-04
录用日期: 2023-05-26
网络出版日期: 2023-06-13
基金资助
国家自然科学基金(51809163)
Experimental Study of Three-Dimensional Swirling Sloshing of Free Surface in Vertical Cylindrical Tank
Received date: 2023-03-09
Revised date: 2023-05-04
Accepted date: 2023-05-26
Online published: 2023-06-13
刘东喜 , 马仁杰 , 蔡文娟 , 卢天择 . 立式圆柱液舱内自由液面三维旋转晃荡试验研究[J]. 上海交通大学学报, 2024 , 58(11) : 1665 -1673 . DOI: 10.16183/j.cnki.jsjtu.2023.082
Considering that the research on resonant three-dimensional swirling waves in vertical cylindrical tanks is relatively rare, this paper has built a set of tank sloshing model test device to study the first-mode and second-mode resonant three-dimensional swirling waves in vertical cylindrical tanks. It is found that when the external excitation frequency is equal to the first mode natural frequency of the free surface movement, three typical waveforms, planar wave, breaking wave, and swirling wave, appear in the cylindrical tank. When the external excitation frequency is close to the first mode natural frequency of the free surface movement, the modulation wave, namely beat phenomenon, appears in the cylindrical tank. When the external excitation frequency is equal to the second mode natural frequency of the free surface movement, three typical waveforms, the second mode wave, the second mode swirling wave, and the irregular wave, appear in the cylindrical tank. The research results in this paper can provide reference for offshore engineering designers to design cylindrical tanks of floating platforms.
Key words: cylindrical tank; liquid sloshing; model test; swirling wave; second-mode resonance
[1] | WANG F, ZHANG Y, WANG Y, et al. Floating non-traditional manufacture of floating drilling storage and offloading units—Study on modeling and optimization method for the underwater rotating technology[J]. Marine Structures, 2013, 31: 15-23. |
[2] | CHRISTENSEN T, WITS?E S A, HAGEN H, et al. Aasta hansteen Spar FPSO—A pioneer in Norwegian deepwater[C]//Offshore Technology Conference. Houston, Texas, USA: OnePetro, 2019: OTC-29222-MS. |
[3] | FALTINSEN O, ROGNEBAKKE O, LUKOVSKY I, et al. Multidimensional model analysis of nonlinear sloshing in a rectangular tank with finite water depth[J]. Journal of Fluid Mechanics, 2000, 407: 201-234. |
[4] | FALTINSEN O, TIMOKHA A. An adaptive multimodal approach to nonlinear sloshing in a rectangular tank[J]. Journal of Fluid Mechanics, 2001, 432: 167-200. |
[5] | 李金龙, 尤云祥, 陈科. 一种几何VOF方法在液舱晃荡流动模拟中的应用[J]. 上海交通大学学报, 2019, 53(8): 943-951. |
LI Jinlong, YOU Yunxiang, CHEN Ke. Application of a geometric VOF method in the simulations of sloshing flow[J]. Journal of Shanghai Jiao Tong University, 2019, 53(8): 943-951. | |
[6] | 刘东喜, 唐文勇, 王晋, 等. 基于非均质多相流模型的液舱晃荡数值模拟[J]. 上海交通大学学报, 2017, 51(3): 283-287. |
LIU Dongxi, TANG Wenyong, WANG Jin, et al. Simulation of liquid tank sloshing by using inhomogeneous multiphase model[J]. Journal of Shanghai Jiao Tong University, 2017, 51(3): 283-287. | |
[7] | 刘戈, 林焰, 管官, 等. LNG独立C型舱晃荡的频域共振特性试验研究[J]. 浙江大学学报: 工学版, 2017, 51(12): 2392-2398. |
LIU Ge, LIN Yan, GUAN Guan, et al. Experimental study on frequency domain resonant characteristic of sloshing in LNG independent type C tank[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(12): 2392-2398. | |
[8] | 薛米安, 陈奕超, 苑晓丽, 等. 低载液率液体晃荡冲击压力的试验研究[J]. 振动与冲击, 2019, 38(14): 239-245. |
XUE Mi’an, CHEN Yichao, YUAN Xiaoli, et al. Experimental study on the impact pressure of sloshing liquid with low filling level[J]. Journal of Vibration and Shock, 2019, 38(14): 239-245. | |
[9] | 杨志勋, 骆松, 徐潜岳, 等. 基于模型试验的晃荡荷载统计分析对比研究[J]. 船舶力学, 2020(3): 294-300. |
YANG Zhixun, LUO Song, XU Qianyue, et al. Comparative study on statistical analysis of sloshing load based on model test[J]. Journal of Ship Mechanics, 2020(3): 294-300. | |
[10] | LEE J, AHN Y, KIM Y. Experimental study on effect of density ratio and phase transition during sloshing impact in rectangular tank[J]. Ocean engineering, 2021, 242: 110105. |
[11] | SOUTO-IGLESIAS A, BULIAN G, BOTIA-VERA E. A set of canonical problems in sloshing. Part 2: Influence of tank width on impact pressure statistics in regular forced angular motion[J]. Ocean Engineering, 2015, 105: 136-159. |
[12] | KIM S, CHUNG S, SHIN W, et al. Experimental study on sloshing reduction effects of baffles linked to a spring system[J]. Ocean Engineering, 2018, 170: 136-147. |
[13] | IBRAHIM R. Liquid sloshing dynamics: Theory and applications[R]. Cambridge, UK: Cambridge University Press, 2005. |
[14] | ELAHI R, PASSANDIDEH-FARD M, JAVANSHIR A. Simulation of liquid sloshing in 2D containers using the volume of fluid method[J]. Ocean Engineering, 2015, 96: 226-244. |
[15] | FALTINSEN O, ROGNEBAKKE O, TIMOKHA A. Resonant three-dimensional nonlinear sloshing in a square-base basin[J]. Journal of Fluid Mechanics, 2000, 487: 1-42. |
[16] | 刘东喜, 雷丽君, 王晋, 等. 深水SDPSO平台油水置换储卸油系统排出水含油量研究[J]. 中国海上油气, 2021, 33(4): 164-171. |
LIU Dongxi, LEI Lijun, WANG Jin, et al. Study on oil content in discharged water from oil-water replacement storage offloading system of deepwater SDPSO platform[J]. China Offshore Oil and Gas, 2021, 33(4): 164-171. |
/
〈 |
|
〉 |