新型电力系统与综合能源

基于门控循环注意力网络的配电网故障识别方法

展开
  • 1.上海交通大学 电子信息与电气工程学院,上海 200240
    2.国网青海省电力公司,西宁 810008
    3.国网北京市电力公司,北京 100031
陈昊蓝(2001-),本科生,主要从事配电网早期故障识别方法研究.
严英杰,讲师;E-mail:yanyingjie@sjtu.edu.cn.

收稿日期: 2022-03-31

  修回日期: 2022-07-13

  录用日期: 2022-08-16

  网络出版日期: 2023-06-16

基金资助

国家电网有限公司科技项目资助(52020121000C)

Fault Detection in Power Distribution Systems Based on Gated Recurrent Attention Network

Expand
  • 1. School of Electronic Information and Electric Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. State Grid Qinghai Electric Power Company, Xining 810008, China
    3. State Grid Beijing Electric Power Company, Beijing 100031, China

Received date: 2022-03-31

  Revised date: 2022-07-13

  Accepted date: 2022-08-16

  Online published: 2023-06-16

摘要

为了提高小样本条件下配电网故障辨识准确率,提出一种门控循环注意力网络模型.首先,通过注意力机制赋予故障相中关键周期较高权重,通过加权运算使得模型更加关注上述关键信息.其次,利用门控循环网络处理波形序列,该网络利用门控信号控制记忆传递过程,并借由记忆传递建立序列中不同阶段输入波形和故障类别概率间的关系,从而提升识别准确率.基于仿真数据和实际数据的实验均表明:所提方法在小样本条件下的可靠性和准确率远优于同等条件下支持向量机、梯度提升决策树、卷积神经网络等常用分类模型,为配电网故障辨识技术提供了一种新思路.

本文引用格式

陈昊蓝, 靳冰莹, 刘亚东, 钱庆林, 王鹏, 陈艳霞, 于希娟, 严英杰 . 基于门控循环注意力网络的配电网故障识别方法[J]. 上海交通大学学报, 2024 , 58(3) : 295 -303 . DOI: 10.16183/j.cnki.jsjtu.2022.091

Abstract

To improve fault identification accuracy in power distribution systems, a model named gated recurrent attention network is proposed. First, a higher weight is put on the key cycles of fault phase based on the attention mechanism, making the model focus more on these key messages by weight assignment. Then, the gated recurrent network is adopted, which controls the memory transmission with gate signal and constructs the relationship between input waveform and probability of events at different stages to process the waveform sequence, thereby improving recognition accuracy. Experiments based on both simulation and field data show that the proposed method, under the small-sample-learning condition, is much better than other commonly-used classification models, such as support vector machine, gradient boosting decision tree, and convolutional neural network, providing new insights into fault identification technology in power distribution systems.

参考文献

[1] 张丽虹, 常成, 熊炜, 等. 基于智能控制终端的主动配电网故障处理方法[J]. 电力科学与技术学报, 2020(2): 22-29.
  ZHANG Lihong, CHANG Cheng, XIONG Wei, et al. Research on fault processing of active power distribution network based on intelligent control terminal[J]. Journal of Electric Power Science & Technology, 2020(2): 22-29.
[2] 陈国炎, 李俊均, 陈颖, 等. 数据驱动的配电开关设备交互式诊断平台[J]. 电工电能新技术, 2019, 38(3): 10-17.
  CHEN Guoyan, LI Junjun, CHEN Ying, et al. Data-driven and interactive fault diagnosis of distribution switches[J]. Advanced Technology of Electrical Engineering & Energy, 2019, 38(3): 10-17.
[3] 江秀臣, 刘亚东, 傅晓飞, 等. 输配电设备泛在电力物联网建设思路与发展趋势[J]. 高电压技术, 2019, 45(5): 1345-1351.
  JIANG Xiuchen, LIU Yadong, FU Xiaofei, et al. Construction ideas and development trends of transmission and distribution equipment of the ubiquitous power internet of things[J]. High Voltage Engineering, 2019, 45(5): 1345-1351.
[4] 熊思衡, 刘亚东, 方健, 等. 配电线路早期故障辨识方法[J]. 高电压技术, 2020, 46(11): 259-265.
  XIONG Siheng, LIU Yadong, FANG Jian, et al. Detection method of incipient faults of power distribution lines[J]. High Voltage Engineering, 2020, 46(11): 259-265.
[5] SIDHU T S, XU Z. Detection of incipient faults in distribution under-ground cables[J]. IEEE Transactions on Power Delivery, 2010, 25(3): 1363-1371.
[6] 李泽文, 刘基典, 席燕辉, 等. 基于暂态波形相关性的配电网故障定位方法[J]. 电力系统自动化, 2020(21): 72-79.
  LI Zewen, LIU Jidian, XI Yanhui, et al. Fault location method for distribution network based on transient waveform correlation[J]. Automation of Electric Power Systems. 2020, 44(21): 72-79.
[7] IZADI M, MOHSENIAN-RAD H. Synchronous waveform measurements to locate transient events and incipient faults in power distribution networks[J]. IEEE Transactions on Smart Grid, 2021, 12(5): 4295-4307.
[8] ZHANG W, JING Y, XIAO X. Model-based general arcing fault detection in medium-voltage distribution lines[J]. IEEE Transactions on Power Delivery, 2016, 31(5): 2231-2241.
[9] 蒋碧莺, 荣建, 张军. Logistic分类算法下的配电网故障识别技术研究[J]. 电工技术, 2018, 486(24): 70-71.
  JIANG Biying, RONG Jian, ZHANG Jun. Research on fault identification technology of distribution network based on Logistic classification[J]. Electric Engineering, 2018, 486(24): 70-71.
[10] 郭谋发, 游林旭, 洪翠, 等. 基于LCD-Hilbert谱奇异值和多级支持向量机的配电网故障识别方法[J]. 高电压技术, 2017(4): 1239-1247.
  GUO Moufa, YOU Linxu, HONG Cui, et al. Identification method of distribution network faults based on singular value of LCD-Hilbert spectrums and multilevel SVM[J]. High Voltage Engineering, 2017(4): 1239-1247.
[11] 赵智, 王艳松, 鲍兵, 等. 基于小波神经网络的配电网故障类型识别[J]. 电力系统及其自动化学报, 2007, 19(6): 93-96.
  ZHAO Zhi, WANG Yansong, BAO Bing, et al. Fault type identification in distribution network based on wavelet neural network[J]. Proceedings of The CSU-EPSA, 2007, 19(6): 93-96.
[12] 武光利, 郭振洲, 李雷霆, 等. 融合FCN和LSTM的视频异常事件检测[J]. 上海交通大学学报, 2021, 55(5): 607-614.
  WU Guangli, GUO Zhenzhou, LI Leiting, et al. Video abnormal detection combining FCN with LSTM[J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 607-614.
[13] 刘秀丽, 徐小力. 基于特征金字塔卷积循环神经网络的故障诊断方法[J]. 上海交通大学学报, 2022, 56(2): 182-190.
  LIU Xiuli, XU Xiaoli. A fault diagnosis method based on feature pyramid CRNN network[J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 182-190.
[14] 张松林, 马栋梁, 王德禹. 基于长短期记忆神经网络的板裂纹损伤检测方法[J]. 上海交通大学学报, 2021, 55(5): 527-535.
  ZHANG Songlin, MA Dongliang, WANG Deyu. Method for plate crack damage detection based on long short-term memory neural network[J]. Journal of Shanghai Jiaotong University, 2021, 55(5): 527-535.
[15] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM, 2017: 6000-6010.
[16] XIONG S H, LIU Y D, FANG J, et al. Incipient fault identification in power distribution systems via human-level concept learning[J]. IEEE Transactions on Smart Grid, 2020, 11(6): 5239-5248.
[17] GRAVES A, LIWICKI M, FERNáNDEZ S, et al. A novel connectionist system for unconstrained handwriting recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2009, 31(5): 855-868.
[18] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[19] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL]. (2014-09-03) [2022-03-30]. https://arxiv.org/abs/1406.1078.
[20] KULKARNI S, ALLEN A J, CHOPRA S, et al. Waveform characteristics of underground cable failures[C]// IEEE PES General Meeting. Minneapolis, USA. IEEE, 2010: 1-8.
[21] JANNATI M, VAHIDI B, HOSSEINIAN S H. Incipient faults monitoring in underground medium voltage cables of distribution systems based on a two-step strategy[J]. IEEE Transactions on Power Delivery, 2019, 34(4): 1647-1655.
[22] 谢潇磊, 刘亚东, 孙鹏, 等. 新型配电网线路PMU装置的研制[J]. 电力系统自动化, 2016, 40(12): 15-20.
  XIE Xiaolei, LIU Yadong, SUN Peng, et al. Development of novel PMU device for distribution network lines[J]. Automation of Electric Power Systems, 2016, 40(12): 15-20.
[23] SASAKI Y. The truth of the f-measure[D]. Manchester: University of Manchester, 2007.
[24] KE G L, MENG Q, FINLEY T, et al. LightGBM: A highly efficient gradient boosting decision tree[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM, 2017: 3149-3157.
[25] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[26] CHANG C C, LIN C J. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems & Technology, 2011, 2(3): 1-27.
[27] CHEN T Q, HE T. Xgboost: Extreme gradient boosting[EB/OL]. (2023-03-31)[2023-08-23]. http://mysql.orst.edu/pub/cran/web/packages/xgboost/vignettes/xgboost.pdf.
文章导航

/