船舶海洋与建筑工程

系统不确定的深海钻井立管解脱反冲智能控制

  • 王向磊 ,
  • 刘秀全 ,
  • 刘兆伟 ,
  • 畅元江 ,
  • 陈国明
展开
  • 1.中国石油大学(华东) 海洋油气装备与安全技术研究中心,山东 青岛 266580
    2.中国石油大学(华东) 海洋物探及勘探开发装备国家工程研究中心,山东 青岛 266580
王向磊(1994—),博士生,从事海洋油气管柱动力学研究.
刘秀全,副教授,博士生导师,电话(Tel.):0532-86983300;E-mail:lxqmcae@163.com.

收稿日期: 2022-11-09

  修回日期: 2023-05-12

  录用日期: 2023-05-16

  网络出版日期: 2023-06-01

基金资助

国家自然科学基金(52271300);国家自然科学基金(51809279)

Intelligent Control for Deepwater Drilling Riser Disconnection and Recoil Considering System Uncertainty

  • WANG Xianglei ,
  • LIU Xiuquan ,
  • LIU Zhaowei ,
  • CHANG Yuanjiang ,
  • CHEN Guoming
Expand
  • 1. Centre for Offshore Engineering and Safety Technology, China University of Petroleum, Qingdao 266580, Shandong, China
    2. National Engineering Research Center for Marine Geophysical Prospecting and Exploration Equipment, China University of Petroleum, Qingdao 266580, Shandong, China

Received date: 2022-11-09

  Revised date: 2023-05-12

  Accepted date: 2023-05-16

  Online published: 2023-06-01

摘要

深海钻井立管系统紧急解脱后的反冲控制是深海油气钻探中的必备技术,但系统动力参数在多方面具有不确定性与难测性,给实际反冲控制带来了严峻挑战.建立系统模型不确定条件下的立管反冲智能自适应控制方法,通过反冲控制名义状态空间方程与闭环系统稳定性推导考虑模型不确定的修正控制输入,采用径向基(RBF)神经网络逼近模型不确定部分并选取满足李雅普诺夫(Lyapunov)稳定的权值自适应律,实现控制输入中对不确定部分的动态补偿.结果表明:该方法适用于实际反冲控制阀有调控速度限制的情况;张紧器刚度、阻尼、钻井液下泄摩擦力及立管浮力载荷等不确定性对反冲动力响应及控制效果均有一定影响;无论系统参数是否精确,经过RBF自适应控制后都降低了反冲初期振荡高度且降低了反冲触底风险.研究成果可有效解决工程背景下缺乏准确系统参数的立管反冲控制难题.

本文引用格式

王向磊 , 刘秀全 , 刘兆伟 , 畅元江 , 陈国明 . 系统不确定的深海钻井立管解脱反冲智能控制[J]. 上海交通大学学报, 2024 , 58(11) : 1698 -1706 . DOI: 10.16183/j.cnki.jsjtu.2022.455

Abstract

Recoil control for deepwater drilling riser system after emergency disconnection is a necessary technique in deepwater oil exploration. However, some dynamic parameters of the riser system are uncertain and difficult to measure, which poses severe challenges to the riser recoil control. Therefore, an intelligent riser recoil adaptive control method considering system uncertainties is established. Based on the nominal state-space expression of recoil control and closed-loop system stability, the modified control input considering model uncertainties is derived. The radial basis function (RBF) neural network is adopted to approximate model uncertainties, and the weight adaptive law satisfying Lyapunov stability is selected to realize dynamic compensation of uncertainties in control inputs. The results show that the proposed method is applicable to the actual recoil control valve with adjustment speed limit. The uncertainties of tensioner stiffness, damping, mud discharge friction, and riser buoyancy loads have a certain effect on recoil dynamic response and control performance. The RBF adaptive control method can effectively reduce the initial recoil oscillation height and reduce the risk of recoil bottoming. The findings can effectively solve the problem of recoil control without accurate system parameters in the engineering background.

参考文献

[1] NIE Z Y, CHANG Y J, LIU X Q, et al. A DBN-GO approach for success probability prediction of drilling riser emergency disconnect in deepwater[J]. Ocean Engineering, 2019, 180: 49-59.
[2] CHANG Y J, CHEN G M, WU X F, et al. Failure probability analysis for emergency disconnect of deepwater drilling riser using Bayesian network[J]. Journal of Loss Prevention in the Process Industries, 2018, 51: 42-53.
[3] 王坤鹏, 薛鸿祥, 唐文勇. 全耦合深海平台系统中液压张紧器的数值模拟[J]. 上海交通大学学报, 2012, 46(10): 1652-1657.
  WANG Kunpeng, XUE Hongxiang, TANG Wen-yong. Numerical simulation of hydraulic tensioner in fully coupled deep-sea platform system[J]. Journal of Shanghai Jiao Tong University, 2012, 46(10): 1652-1657.
[4] 齐娟娟. 悬挂状态下钻井隔水管的结构动力学及涡激振动研究[D]. 上海: 上海交通大学, 2015.
  QI Juanjuan. A Study on structure dynamics and vortex shedding vibration of drilling risers under hang off mode[D]. Shanghai: Shanghai Jiao Tong University, 2015.
[5] MENG S, CHE C D, ZHANG W J. Discharging flow effect on the recoil response of a deep-water drilling riser after an emergency disconnect[J]. Ocean Engineering, 2018, 151: 199-205.
[6] MENG S, CHEN Y, CHE C D. Coupling effects of a deep-water drilling riser and the platform and the discharging fluid column in an emergency disconnect scenario[J]. China Ocean Engineering, 2020, 34(1): 21-29.
[7] WANG Y B, GAO D L. Influence of the damping matrix and mud discharge on the recoil response of deepwater drilling riser after emergency disconnection[J]. Ocean Engineering, 2021, 222: 108591.
[8] WANG X L, LIU X Q, LIU Z W, et al. Dynamic recoil response of tensioner and riser coupled in an emergency disconnection scenario[J]. Ocean Engineering, 2022, 247: 110730.
[9] 田秀娟. 深水钻井隔水管张紧系统反冲控制研究[D]. 青岛: 中国石油大学(华东), 2013.
  TIAN Xiujuan. Study on recoil control of riser tensioning system in deepwater drilling[D]. Qingdao: China University of Petroleum, 2013.
[10] 何新霞, 张方芬, 田秀娟, 等. 深水钻井隔水管反冲控制系统建模与仿真[J]. 石油机械, 2016, 44(3): 63-67.
  HE Xinxia, ZHANG Fangfen, TIAN Xiujuan, et al. Modeling and simulation for recoil control system of deepwater drilling riser[J]. China Petroleum Machinery, 2016, 44(3): 63-67.
[11] LIU X Q, LIU Z W, WANG X L, et al. Recoil control of deepwater drilling riser system based on optimal control theory[J]. Ocean Engineering, 2021, 220: 108473.
[12] LIU X Q, LIU Z W, WANG X L, et al. An intelligent recoil controller for riser system based on fuzzy control theory[J]. International Journal of Naval Architecture and Ocean Engineering, 2022, 14: 100439.
[13] 李欢, 李鹏, 范松, 等. 基于AMESim的隔水管张紧器抗反冲控制研究[J]. 石油机械, 2019, 47(9): 84-89.
  LI Huan, LI Peng, FAN Song, et al. AMESim-based research on anti-recoil control of riser tensioner[J]. China Petroleum Machinery, 2019, 47(9): 84-89.
[14] SUN Y T, ZHAO Y D, ZHANG B L, et al. Recoil control of deepwater-drilling riser with optimal guaranteed cost H∞ control[J]. Applied Sciences, 2022, 12(8): 3945.
[15] ZHAO Y D, SUN Y T, ZHANG B L, et al. Recoil control of deepwater drilling riser systems via optimal control with feedforward mechanisms[J]. Ocean Engineering, 2022, 257: 111690.
[16] American Petroleum Institute. Design, selection, operation, and maintenance of marine drilling riser systems: API RP 16Q[S]. Washington, USA: API, 2017.
[17] WANG X L, LIU X Q, ZHANG N, et al. Improved recoil dynamic analysis of the deepwater riser system after emergency disconnection[J]. Applied Ocean Research, 2021, 113: 102719.
[18] LI C W, FAN H H, WANG Z M, et al. Two methods for simulating mud discharge after emergency disconnection of a drilling riser[J]. Journal of Natural Gas Science and Engineering, 2016, 28: 142-152.
[19] WANG X L, LIU X Q, ZHANG S Y, et al. Study on mud discharge after emergency disconnection of deepwater drilling risers[J]. Journal of Petroleum Science and Engineering, 2020, 190: 107105.
[20] YANG Y, HUANG D Q, DONG X C. Enhanced neural network control of lower limb rehabilitation exoskeleton by add-on repetitive learning[J]. Neurocomputing, 2019, 323: 256-264.
[21] JI N, LIU J K, YANG H J. Sliding mode control based on RBF neural network for a class of under-actuated systems with unknown sensor and actuator faults[J]. International Journal of Systems Science, 2020, 51(16): 3539-3549.
[22] HUO X X, GE T, WANG X Y. Horizontal path-following control for deep-sea work-class ROVs based on a fuzzy logic system[J]. Ships and Offshore Structures, 2018, 13(6): 637-648.
[23] LIU J K. Radial basis function (RBF) neural network control for mechanical systems[M]. Beijing: Tsinghua & Springer Press, 2013: 133-159.
文章导航

/