新型电力系统与综合能源

基于树结构Parzen估计器优化集成学习的短期负荷预测方法

  • 罗敏 ,
  • 杨劲锋 ,
  • 俞蕙 ,
  • 赖雨辰 ,
  • 郭杨运 ,
  • 周尚礼 ,
  • 向睿 ,
  • 童星 ,
  • 陈潇
展开
  • 1.南方电网数字电网研究院有限公司,广州 510000
    2.中国南方电网有限责任公司, 广州 510000
    3.深圳市橙智科技有限公司,广东 深圳 518000
罗敏(1985-),高级工程师,从事电动汽车与储能、用电大数据等研究.
童星,博士,电话(Tel.):0755-84860840;E-mail: tongxing@orait.cn.

收稿日期: 2022-11-28

  修回日期: 2023-02-17

  录用日期: 2023-03-09

  网络出版日期: 2023-05-30

基金资助

南方电网数字电网研究研究院(670000KK52210036)

TPE-Based Boosting Short-Term Load Forecasting Method

  • LUO Min ,
  • YANG Jinfeng ,
  • YU Hui ,
  • LAI Yuchen ,
  • GUO Yangyun ,
  • ZHOU Shangli ,
  • XIANG Rui ,
  • TONG Xing ,
  • CHEN Xiao
Expand
  • 1. Digital Grid Research Institute,China Southern Power Grid, Guangzhou 510000, China
    2. China Southern Power Grid Co., Ltd., Guangzhou 510000, China
    3. Shenzhen Orange Intelligence Technology Co., Ltd., Shenzhen 518000, Guangdong, China

Received date: 2022-11-28

  Revised date: 2023-02-17

  Accepted date: 2023-03-09

  Online published: 2023-05-30

摘要

短期负荷预测主要用于电力系统实时调度、日前发电计划的制定,对电力系统经济调度、系统的安全运行具有重要意义.国内外在采用智能模型进行短期负荷预测方面开展了大量研究,然而智能预测方法的预测效果较易受到现存方法结构及参数的影响,以及预测对象自身个性差异使得参数难以复用,如何精准快速地获取方法结构与参数成为短期负荷预测的关键难题.对此,提出基于树结构Parzen估计器优化集成学习的短期负荷预测方法,可对方法结构与参数进行快速寻优.将该方法应用于中国南方某省短期负荷预测,以实际算例验证了其对预测精度的有效提升.

本文引用格式

罗敏 , 杨劲锋 , 俞蕙 , 赖雨辰 , 郭杨运 , 周尚礼 , 向睿 , 童星 , 陈潇 . 基于树结构Parzen估计器优化集成学习的短期负荷预测方法[J]. 上海交通大学学报, 2024 , 58(6) : 819 -825 . DOI: 10.16183/j.cnki.jsjtu.2022.483

Abstract

Short-term load forecasting is generally applied in power system real-time dispatching and day-ahead generation planning, which is of great significance for power system economic dispatching and safe operation of the system. Many researches on short-term load forecasting using smart models have been conducted at home and abroad. However, how to obtain the optimal structure and parameters accurately and quickly poses a challenge to short-term load forecasting, because the prediction performance of smart forecasting methods is more easily affected by the structure and parameters of the method, and the personality difference of the prediction object itself makes it difficult for the parameters to be reused. Aiming at this problem, a tree-structured Parzen estimator (TPE)-based boosting short-term load forecasting method is proposed. The results show that the proposed method can achieve rapid optimization of structure and parameters, which is verified in the application in short-term load forecasting of a southern province in China to improve the prediction accuracy.

参考文献

[1] SAAD Z, NUR HAZIRAH A J, SUZIANA A, et al. Short-term load forecasting of 415 V, 11 kV and 33 kV electrical systems using MLP network[C]//2017 International Conference on Robotics, Automation and Sciences. Melaka, Malaysia: IEEE, 2017: 1-5.
[2] HE T, DONG Z Y, MENG K, et al. Accelerating Multi-layer Perceptron based short term demand forecasting using Graphics Processing Units[C]//2009 Transmission & Distribution Conference & Exposition:Asia and Pacific. Seoul, Korea: IEEE, 2009: 1-4.
[3] TSAKOUMIS A C, VLADOV S S, MLADENOV V M. Electric load forecasting with multilayer perceptron and Elman neural network[C]//6th Seminar on Neural Network Applications in Electrical Engineering. Belgrade, Yugoslavia: IEEE, 2002: 87-90.
[4] DRAGOMIR O E, DRAGOMIR F, BREZEANU I, et al. MLP neural network as load forecasting tool on short-term horizon[C]//2011 19th Mediterranean Conference on Control & Automation. Corfu, Greece: IEEE, 2011: 1265-1270.
[5] KONG W C, DONG Z Y, JIA Y W, et al. Short-term residential load forecasting based on LSTM recurrent neural network[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 841-851.
[6] RAFI S H, Al MASOOD N, DEEBA S R, et al. A short-term load forecasting method using integrated CNN and LSTM network[J]. IEEE Access, 2021, 9: 32436-32448.
[7] TAN M, YUAN S P, LI S H, et al. Ultra-short-term industrial power demand forecasting using LSTM based hybrid ensemble learning[J]. IEEE Transactions on Power Systems, 2020, 35(4): 2937-2948.
[8] LI C J, DONG Z Y, DING L, et al. Interpretable memristive LSTM network design for probabilistic residential load forecasting[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(6): 2297-2310.
[9] SHANG C, GAO J W, LIU H B, et al. Short-term load forecasting based on PSO-KFCM daily load curve clustering and CNN-LSTM model[J]. IEEE Access, 2021, 9: 50344-50357.
[10] AGENG D, HUANG C Y, CHENG R G. A short-term household load forecasting framework using LSTM and data preparation[J]. IEEE Access, 9: 167911-167919.
[11] LIAO Z F, PAN H H, FAN X P, et al. Multiple wavelet convolutional neural network for short-term load forecasting[J]. IEEE Internet of Things Journal, 2021, 8(12): 9730-9739.
[12] CHEN Y, LUH P B, GUAN C, et al. Short-term load forecasting: Similar day-based wavelet neural networks[J]. IEEE Transactions on Power Systems, 2010, 25(1): 322-330.
[13] GUAN C, LUH P B, COOLBETH M A, et al. Very short-term load forecasting: Multilevel wavelet neural networks with data pre-filtering[C]//2009 IEEE Power & Energy Society General Meeting. Calgary, Canada: IEEE, 2009: 1-8.
[14] BASHIR Z, EL-HAWARY M E. Short term load forecasting by using wavelet neural networks[C]//2000 Canadian Conference on Electrical and Computer Engineering. Conference Proceedings. Navigating to a New Era (Cat. No.00TH8492). Halifax, Canada: IEEE, 2000: 163-166.
[15] CHEN X, DONG Z Y, MENG K, et al. Electricity price forecasting with extreme learning machine and bootstrapping[J]. IEEE Transactions on Power Systems, 2012, 27(4): 2055-2062.
[16] RAFIEI M, NIKNAM T, AGHAEI J, et al. Probabilistic load forecasting using an improved wavelet neural network trained by generalized extreme learning machine[J]. IEEE Transactions on Smart Grid, 2018, 9(6): 6961-6971.
[17] WANG L, ZHANG Z J, CHEN J Q. Short-term electricity price forecasting with stacked denoising autoencoders[J]. IEEE Transactions on Power Systems, 2017, 32(4): 2673-2681.
[18] SUN W, ZHANG Y X, LI F T. The neural network model based on PSO for short-term load forecasting[C]//2006 International Conference on Machine Learning and Cybernetics. Dalian, China: IEEE, 2006: 3069-3072.
[19] ZHANG C Q, LIN M, TANG M Y. BP neural network optimized with PSO algorithm for daily load forecasting[C]//2008 International Conference on Information Management, Innovation Management and Industrial Engineering. Taipei, China: IEEE, 2008: 82-85.
[20] XU X B, LIU W X, ZHOU X, et al. Short-term load forecasting for the electric bus station based on GRA-DE-SVR[C]//2014 IEEE Innovative Smart Grid Technologies-Asia. Kuala Lumpur, Malaysia: IEEE, 2014: 388-393.
文章导航

/