甲烷/氢气混合燃料贫预混旋流燃烧特性数值研究
收稿日期: 2022-12-07
修回日期: 2023-02-14
录用日期: 2023-02-21
网络出版日期: 2023-05-29
基金资助
沈阳市科技计划项目(22-322-3-30);辽宁省教育厅高等学校基本科研项目(通航专项)(LJKZ0225)
Numerical Study of Combustion Characteristics of Methane/Hydrogen Hybrid Fuel of Lean Premixed Swirl
Received date: 2022-12-07
Revised date: 2023-02-14
Accepted date: 2023-02-21
Online published: 2023-05-29
采用数值模拟的方法,对燃气轮机燃烧室使用甲烷/氢气混合燃料时的混合比例对燃烧室的燃烧特性和污染物排放特性的影响开展了研究.结果表明:由于燃烧化学反应的作用,冷态和热态流场结构存在一定的差异,热态流场流速增高,回流区变大.氢气含量对燃烧室内热态流场的结构和温度分布特性会产生明显影响,氢气含量小于20%时形成中心回流区,可以维持稳定燃烧;氢气含量大于40%时,中心回流区消失,角回流区延长,出现了不同程度的自燃和回火现象;燃烧室进气温度越高自燃现象越明显,进气温度越低回火现象越明显;NOx排放量随着氢气含量增加而增大,CO排放量随着氢气含量增加而减少,CO集中分布在主燃级燃烧区.
王鑫慈, 刘爱虢, 吴小取, 张云杰 . 甲烷/氢气混合燃料贫预混旋流燃烧特性数值研究[J]. 上海交通大学学报, 2024 , 58(8) : 1179 -1187 . DOI: 10.16183/j.cnki.jsjtu.2022.502
The numerical simulation method is used to study the influence of the mixing ratio of methane/hydrogen mixture on the combustion characteristics and pollutant emission characteristics of the combustor. The results show that due to the action of combustion chemical reaction, there exists a certain difference in the structure of cold and hot flow fields. The flow velocity of the hot flow field increases, and the recirculation zone becomes larger. The hydrogen content has a significant impact on the structure and temperature distribution characteristics of the hot flow field, and a central recirculation zone is formed when the hydrogen content is less than 20%, which can maintain stable combustion. When the hydrogen content is greater than 40%, the central recirculation zone disappears, the external recirculation zone is extended, and the spontaneous combustion and flashback occur to varying degrees. As the inlet air temperature increases, the spontaneous ignition phenomenon becomes more obvious, and the inlet air temperature decreases, the flashback phenomenon becomes more obvious. NOx emissions increase with the increase of hydrogen content, CO emissions decrease with the increase of hydrogen content, and CO is concentrated in the combustion zone of the main combustion stage.
[1] | 凌文, 刘玮, 李育磊, 等. 中国氢能基础设施产业发展战略研究[J]. 中国工程科学, 2019, 21(3): 76-83. |
LING Wen, LIU Wei, LI Yulei, et al. Research on the development strategy of hydrogen energy infrastructure industry in China[J]. Engineering Science, 2019, 21(3): 76-83. | |
[2] | 刘应都, 郭红霞, 欧阳晓平. 氢燃料电池技术发展现状及未来展望[J]. 中国工程科学, 2021, 23(4): 162-171. |
LIU Yingdu, GUO Hongxia, OUYANG Xiaoping. Development status and future prospect of hydrogen fuel cell technology[J]. Engineering Science, 2021, 23(4): 162-171. | |
[3] | 吕光普, 刘潇, 张志浩, 等. 氢燃气轮机燃烧技术研究进展[J]. 燃气轮机技术, 2022, 35(1): 1-15. |
LYU Guangpu, LIU Xiao, ZHANG Zhihao, et al. Research progress of hydrogen gas turbine combustion technology[J]. Gas Turbine Technology, 2022, 35(1): 1-15. | |
[4] | FUNKE H H, BECKMANN N, KEINZ J, et al. 30 years of dry-low-nox micromix combustor research for hydrogen-rich fuels-an overview of past and present activities[J]. Journal of Engineering for Gas Turbines and Power, 2021, 143(7): 071002. |
[5] | 田书耘, 朱志劼, 蒋俊, 等. 氢燃料燃气轮机研发现状和最新技术进展[J]. 能源研究与管理, 2021(4): 10-17. |
TIAN Shuyun, ZHU Zhijie, JIANG Jun, et al. Research and development status and latest technology progress of hydrogen fuel gas turbine[J]. Energy Research and Management, 2021(4): 10-17. | |
[6] | 李苏辉, 张归华, 吴玉新. 面向未来燃气轮机的先进燃烧技术综述[J]. 清华大学学报(自然科学版), 2021, 61(12): 1423-1437. |
LI Suhui, ZHANG Guihua, WU Yuxin. Review of advanced combustion technology for future gas turbines[J]. Journal of Tsinghua University (Natural Science Edition), 2021, 61(12): 1423-1437. | |
[7] | 刘爱虢. 气体燃料燃气轮机低排放燃烧室技术发展现状及水平[J]. 沈阳航空航天大学学报, 2018, 35(4): 1-28. |
LIU Aiguo. Development status and level of low-emission combustion chamber technology for gas-fueled gas turbines[J]. Journal of Shenyang University of Aeronautics and Astronautics, 2018, 35(4): 1-28. | |
[8] | BOTHIEN M R, CIANI A, WOOD J P, et al. Sequential combustion in gas turbines: The key technology for burning high hydrogen contents with low emissions[C]//ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Phoenix, Arizona, USA:ASME,2019:GT2019-90798. |
[9] | MELONI R, CERUTTI M. Numerical modelling of NOx emissions and flame stabilization mechanisms in gas turbine burners operating with hydrogen and hydrogen-methane blends[C]//ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Virtual, Online:ASME,2020:GT2020-15432. |
[10] | VASHISHTHA A, YOUSEFIAN S. CFD-CRN study of NOx formation in a high-pressure combustor fired with lean premixed CH4/H2-Air mixtures[C]//ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Virtual, Online:ASME,2020:GT2020-14819. |
[11] | 刘晓佩. 氢气/天然气混合燃料贫预混旋流燃烧特性研究[D]. 北京: 中国科学院研究生院, 2016. |
LIU Xiaopei. Study on combustion characteristics of hydrogen/natural gas hybrid fuel poor premix swirl[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2016. | |
[12] | 杨协和, 吴玉新, 张扬, 等. 稀释剂对H2/CH4预混火焰熄灭特性影响[J]. 工程热物理学报, 2021, 42(4): 1046-1052. |
YANG Xiehe, WU Yuxin, ZHANG Yang, et al. Effect of diluent on flame extinguishing characteristics of H2/CH4 premix[J]. Journal of Engineering Thermophysics, 2021, 42(4): 1046-1052. | |
[13] | 田晓晶. 氢燃料旋流预混火焰燃烧诱导涡破碎回火特性研究[D]. 北京: 中国科学院研究生院, 2015. |
TIAN Xiaojing. Study on characteristics of vortex crushing and tempering induced by combustion of hydrogen fuel swirl premix flame[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2015. | |
[14] | 王中华. 基于OH-PLIF技术的微型燃气轮机环形燃烧室混合气燃烧特性研究[D]. 重庆: 重庆大学, 2019. |
WANG Zhonghua. Study on combustion characteristics of annular combustion chamber mixture of micro gas turbine based on OH-PLIF technology[D]. Chongqing: Chongqing University, 2019. | |
[15] | MOHAMMAD B S, MCMANUS K, BRAND A, et al. Hydrogen enrichment impact on gas turbine combustion characteristics[C]//ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Virtual, Online:ASME,2020:GT2020-15294. |
[16] | PATEL V, SHAH R. Effect of hydrogen enrichment on combustion characteristics of methane swirling and non-swirling inverse diffusion flame[J]. International Journal of Hydrogen Energy, 2019, 44(52): 28316-28329. |
[17] | BARAIYA N A, CHAKRAVARTHY S R. The role of mean flame anchoring on the stability characteristics of syngas, synthesis natural gas, and hydrogen fuels in a turbulent non-premixed bluff-body combustor[C]//ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Virtual, Online:ASME,2019:GT2019-91981. |
[18] | RUNYON J, PUGH D, GILES A, et al. Experimental and kinetic evaluation of pressurized lean premixed hydrogen-air flame stability with carbon dioxide and steam dilution[C]//ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Virtual, Online:ASME,2020:GT2020-16083. |
[19] | STROLLO J, PELUSO S, O’CONNO J. Effect of hydrogen on steady-state and transient combustion instability characteristics[C]//ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Virtual, Online:ASME,2020:GT2020-16041. |
[20] | EBI D, JANSOHN P. Boundary layer flashback limits of hydrogen-methane-air flames in a generic swirl burner at gas turbine-relevant conditions[J]. Journal of Engineering for Gas Turbines and Power, 2021, 143(8): 081011. |
[21] | AUWAIJAN N, MCDONELL V. Investigating boundary layer flashback of a high turbulence intensity jet flame at gas turbine conditions[C]//ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Virtual, Online:ASME,2020:GT2020-15302. |
[22] | BRODA J C, SEO S, SANTORO R J, et al. An experimental study of combustion dynamics of a premixed swirl injector[J]. Symposium (International) on Combustion, 1998, 25(2): 1849-1856. |
/
〈 |
|
〉 |