电子信息与电气工程

基于交互式设计超材料建模与分析的MCR-WPT效率提升研究

展开
  • 桂林电子科技大学 机电工程学院,广西壮族自治区 桂林 541004
范兴明(1978-),教授,博士生导师,从事智能化电器研究.

收稿日期: 2023-02-19

  修回日期: 2023-04-23

  录用日期: 2023-04-28

  网络出版日期: 2023-05-23

基金资助

国家自然科学基金(6174112);广西自然科学基金(2022GXNSFAA03553)

MCR-WPT Efficiency Improvement Based on Metamaterial Interactive Modeling and Analysis

Expand
  • School of Mechanical and Electrical Engineering, Guilin University of Electronic and Technology, Guilin 541004, Guangxi Zhuang Autonomous Region, China

Received date: 2023-02-19

  Revised date: 2023-04-23

  Accepted date: 2023-04-28

  Online published: 2023-05-23

摘要

超材料具有特殊的磁场调控能力,被广泛关注并应用于磁耦合谐振无线电能传输(MCR-WPT)领域,但寻求针对特定领域目标需求的超材料设计具有挑战性.目前,超材料的一般设计方法为S参数反演法和等效电路法,设计流程通常需要多次建模仿真得到目标参数,该过程较为繁琐耗时.对此,深入分析上述两种设计方法的特性并将二者结合,采用HFSS与MATLAB软件交互设计和优化用于MCR-WPT特性提升的超材料,有效简化了超材料的设计过程.以无线电能传输效率优化为目标设计方形和Koch两种超材料单元,分析对比两种单元的电磁特性.搭建工作频率为6.78 MHz的MCR-WPT系统实验平台,探究两种超材料对传输效率的影响.实验结果表明,方形超材料和Koch超材料分别实现了28.4%和24.6%的最大传输效率提升,证明了交互设计可以更简便地设计超材料并且用于无线电能传输系统传输效率的提升.

本文引用格式

范兴明, 张浩楠, 张鑫 . 基于交互式设计超材料建模与分析的MCR-WPT效率提升研究[J]. 上海交通大学学报, 2024 , 58(4) : 545 -554 . DOI: 10.16183/j.cnki.jsjtu.2023.025

Abstract

Metamaterials have special magnetic field control capabilities as a matter of concern and have been applied in the field of magnetically-coupled resonant wireless power transfer (MCR-WPT). It is a challenging study topic to seek a metamaterial designed for the target needs of a specific field. The S-parameter retrieval method and equivalent circuit method have received wide attention as the commonly used design methods for metamaterials. The parameters of metamaterials are obtained by repeated simulations, this design process is time-consuming. In this paper, the characteristics of the above two design methods are analyzed and combined. The HFSS and MATLAB software are used to interactively design and optimize the metamaterials used for MCR-WPT characteristic improvement, which effectively simplifies the design process. Furthermore, the square and Koch metamaterial units are designed to optimize the efficiency, and the characteristics of the units are analyzed and compared. Finally, an experimental platform of 6.78 MHz MCR-WPT system is built to analyze the influences of metamaterials on efficiency. The experimental results show that the square metamaterial and Koch metamaterial achieve 28.4% and 24.6% of the maximum power transmission efficiency, respectively, which proves that interactive design can more conveniently design metamaterials and improve the transmission efficiency of the MCR-WPT system.

参考文献

[1] 杨庆新, 陈海燕, 徐桂芝, 等. 无接触电能传输技术的研究进展[J]. 电工技术学报, 2010, 25(7): 6-13.
  YANG Qingxin, CHEN Haiyan, XU Guizhi, et al. Research progress in contactless power transmission technology[J]. Transactions of China Electrotechnical Society, 2010, 25(7): 6-13.
[2] KURS A, KARALIS A, MOFFATT R, et al. Wireless power transfer via strongly coupled magnetic resonances[J]. Science, 2007, 317(5834): 83-86.
[3] 卢闻州, 沈锦飞, 方楚良. 磁耦合谐振式无线电能传输电动汽车充电系统研究[J]. 电机与控制学报, 2016, 20(9): 46-53.
  LU Wenzhou, SHEN Jinfei, FANG Chuliang. Study of magnetically-coupled resonant wireless power transfer electric car charging system[J]. Electric Machines and Control, 2016, 20(9): 46-53.
[4] 贾智伟, 颜国正, 石煜, 等. 基于生物安全性的无线能量传输系统接收线圈优化设计[J]. 上海交通大学学报, 2012, 46(7): 1127-1131.
  JIA Zhiwei, YAN Guozheng, SHI Yu, et al. Optimization design of transmitting coils in the wireless power transmission based on human tissue safety[J]. Journal of Shanghai Jiao Tong University, 2012, 46(7): 1127-1131.
[5] 范兴明, 贾二炬, 高琳琳, 等. 基于目标参数最优的磁耦合谐振式无线能量传输系统频率特性分析及仿真验证[J]. 上海交通大学学报, 2020, 54(4): 430-440.
  FAN Xingming, JIA Erju, GAO Linlin, et al. Analysis and simulation of frequency characteristic based on optimal objective parameter in magnetically-coupled resonant wireless power transfer system[J]. Journal of Shanghai Jiao Tong University, 2020, 54(4): 430-440.
[6] 黄智慧, 王林, 邹积岩. 双中继和三中继线圈位置参数对无线电能传输功率的影响[J]. 电工技术学报, 2017, 32(5): 208-214.
  HUANG Zhihui, WANG Lin, ZOU Jiyan. The influence of coil location parameters to load power in wireless power transmission with two or three relay coils[J]. Transactions of China Electrotechnical Society, 2017, 32(5): 208-214.
[7] CUI Y, XU J, XU Y H, et al. Improve efficiency and anti-offset using new pot ferrite core in wireless power transmission system[J]. Electrical Engineering, 2019, 101(3): 911-919.
[8] SUN K, FAN R H, ZHANG X H, et al. An overview of metamaterials and their achievements in wireless power transfer[J]. Journal of Materials Chemistry C, 2018, 6(12): 2925-2943.
[9] 黄莹, 马殿光, 唐厚君, 等. 超颖材料特性对无线电力传输系统的影响[J]. 上海交通大学学报, 2014, 48(9): 1213-1217.
  HUANG Ying, MA Dianguang, TANG Houjun, et al. Influences of characteristics of metamaterials on wireless power transmission[J]. Journal of Shanghai Jiao Tong University, 2014, 48(9): 1213-1217.
[10] FAN Y C, LI L, YU S X, et al. Experimental study of efficient wireless power transfer system integrating with highly sub-wavelength metamaterials[J]. Progress in Electromagnetics Research, 2013, 141: 769-784.
[11] 田子建, 陈健, 樊京, 等. 基于磁负超材料的无线电能传输系统[J]. 电工技术学报, 2015, 30(12): 1-11.
  TIAN Zijian, CHEN Jian, FAN Jing, et al. The wireless power transfer system with magnetic metamaterials[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 1-11.
[12] HUANG X T, ZHANG C B, CONG L, et al. Development and prospects of metamaterial in wireless power transfer[J]. IET Power Electronics, 2021, 14(15): 2423-2440.
[13] MOHAN S S, DEL MAR HERSHENSON M, BOYD S P, et al. Simple accurate expressions for planar spiral inductances[J]. IEEE Journal of Solid-State Circuits, 1999, 34(10): 1419-1424.
[14] JOW U M, GHOVANLOO M. Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission[J]. IEEE Transactions on Biomedical Circuits and Systems, 2007, 1(3): 193-202.
[15] HUANG X T, LU C H, LIU M H. Calculation and analysis of near-field magnetic spiral metamaterials for MCR-WPT application[J]. Applied Physics A, 2020, 126(3): 170.
[16] SMITH D R, VIER D C, KOSCHNY T, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 71(3): 036617.
[17] SZABó Z, PARK G H, HEDGE R, et al. A unique extraction of metamaterial parameters based on Kramers-Kronig relationship[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(10): 2646-2653.
[18] 丁敏, 薛晖, 吴博, 等. 基于电磁超材料的两种等效参数提取算法的比较分析[J]. 物理学报, 2013, 62(4): 044218.
  DING Min, XUE Hui, WU Bo, et al. The comparisons between two retrieve algorithms for metamaterials[J]. Acta Physica Sinica, 2013, 62(4): 044218.
[19] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969.
[20] VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Physics-Uspekhi, 1968, 10(4): 509-514.
[21] SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79.
[22] FREIRE M J, MARQUES R, JELINEK L. Experimental demonstration of a μ=-1 metamaterial lens for magnetic resonance imaging[J]. Applied Physics Letters, 2008, 93(23): 231108.
[23] URZHUMOV Y, SMITH D R. Metamaterial-enhanced coupling between magnetic dipoles for efficient wireless power transfer[J]. Physical Review B, 2011, 83(20): 205114.
文章导航

/