生物医学工程

肠道机器人无线供能的混合式三维发射线圈特性研究

展开
  • 上海交通大学 电子信息与电气工程学院;医疗机器人研究院,上海 200240
庄浩宇(1997-),博士生,从事肠道机器人及无线能量传输研究.

收稿日期: 2021-09-13

  修回日期: 2022-09-30

  录用日期: 2021-11-10

  网络出版日期: 2023-06-02

基金资助

国家自然科学基金(61673271);国家自然科学基金(81971767);上海市科研项目(19441910600);上海市科研项目(19441913800);上海市科研项目(19142203800);上海交通大学医疗机器人研究院资助项目(IMR2018KY05);上海浦江计划(20PJ1419300);转化医学国家重大科技基础设施(上海)开放课题项目(TMSK-2021-302)

Characteristics of a Hybrid Three-Dimensional Transmitting Coil for Wireless Power Transmission of Intestinal Robot

Expand
  • School of Electronic Information and Electrical Engineering; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2021-09-13

  Revised date: 2022-09-30

  Accepted date: 2021-11-10

  Online published: 2023-06-02

摘要

在不同位置和姿态下,为满足肠道机器人通过无线方式稳定获取能量的需要,同时尽可能减小肠道机器人的体积,需要发射线圈具有产生空间多维磁场的能力.提出一种混合式的发射线圈结构,采用亥姆霍兹线圈对与鞍形线圈对组合的方式,其结构紧凑并可利用自身的对称性,能够通过旋转产生无死区的三维空间磁场.对两种线圈形式的特性以及组合后的特性分别进行分析.仿真和实验结果表明,在2 A电流激励下,在线圈中心处具有最低3.44%的传输效率和 1204 mW 的接收功率,位置均匀性最低为88.1%,能够实现能量的空间三维覆盖.

本文引用格式

庄浩宇, 颜国正, 费倩, 汪炜, 赵凯 . 肠道机器人无线供能的混合式三维发射线圈特性研究[J]. 上海交通大学学报, 2023 , 57(5) : 545 -551 . DOI: 10.16183/j.cnki.jsjtu.2021.356

Abstract

In order to meet the needs of the intestinal robot to obtain power stably through wireless methods in different positions and postures, and to reduce the volume of the intestinal robot as much as possible, the transmitting coil is required to have the ability to generate spatial multi-dimensional magnetic fields. A hybrid transmitting coil structure is proposed, which combines Helmholtz coil pair and saddle-shaped coil pair. The structure is compact, and its symmetry can be used to generate a three-dimensional magnetic field without dead zone through rotation. The characteristics of the two types of coils and the combined characteristics are analyzed separately. The simulation and experimental results show that at the excitation of 2 A current, the minimum transmission efficiency of 3.44% and the received power of 1 204 mW can be obtained at the center of the coil. The minimum positional uniformity is 88.1%, and the three-dimensional power coverage can be achieved.

参考文献

[1] WANG W, YAN G Z, HAN D, et al. Design and testing of a novel gastrointestinal microrobot[J]. Biomedical Microdevices, 2020, 22(4): 1-11.
[2] WANG W, YAN G Z, WANG Z W, et al. A novel expanding mechanism of gastrointestinal microrobot: Design, analysis and optimization[J]. Micromachines, 2019, 10(11): 724.
[3] 蒲鹏先, 颜国正, 王志武, 等. 微型肠道机器人扩张机构与能量接收线圈的设计与实验[J]. 上海交通大学学报, 2019, 53(10): 1143-1150.
[3] PU Pengxian, YAN Guozheng, WANG Zhiwu, et al. Design and experiment of expanding mechanism and power receiving coil for micro intestinal robot[J]. Journal of Shanghai Jiao Tong University, 2019, 53(10): 1143-1150.
[4] GAO J Y, YAN G Z, WANG Z W, et al. Design and testing of a motor-based capsule robot powered by wireless power transmission[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(2): 683-693.
[5] BASAR M, AHMAD M, CHO J, et al. Application of wireless power transmission systems in wireless capsule endoscopy: An overview[J]. Sensors, 2014, 14(6): 10929-10951.
[6] KIM H J, HIRAYAMA H, KIM S, et al. Review of near-field wireless power and communication for biomedical applications[J]. IEEE Access, 2017, 5: 21264-21285.
[7] CAMPI T, CRUCIANI S, DE SANTIS V, et al. Near field wireless powering of deep medical implants[J]. Energies, 2019, 12(14): 2720.
[8] NG W M, ZHANG C, LIN D Y, et al. Two-and three-dimensional omnidirectional wireless power transfer[J]. IEEE Transactions on Power Electronics, 2014, 29(9): 4470-4474.
[9] HA-VAN N, SEO C. Analytical and experimental investigations of omnidirectional wireless power transfer using a cubic transmitter[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1358-1366.
[10] KHAN S R, PAVULURI S K, CUMMINS G, et al. Miniaturized 3-D cross-type receiver for wirelessly powered capsule endoscopy[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(5): 1985-1993.
[11] RYU M, KIM J D, CHIN H U, et al. Three-dimensional power receiver for in vivo robotic capsules[J]. Medical & Biological Engineering & Computing, 2007, 45(10): 997-1002.
[12] 温桠妮, 颜国正, 王志武, 等. 肠道机器人三维接收线圈的设计与优化[J]. 上海交通大学学报, 2020, 54(11): 1117-1123.
[12] WEN Yani, YAN Guozheng, WANG Zhiwu, et al. Design and optimization of three-dimensional receiving coils for intestinal robots[J]. Journal of Shanghai Jiao Tong University, 2020, 54(11): 1117-1123.
[13] MA G Y, YAN G Z, HE X. Power transmission for gastrointestinal microsystems using inductive coupling[J]. Physiological Measurement, 2007, 28(3): 9-18.
[14] BEIRANVAND R. Analyzing the uniformity of the generated magnetic field by a practical one-dimensional Helmholtz coils system[J]. Review of Scientific Instruments, 2013, 84(7): 075109.
[15] WU W F, ZHOU B Q, LIU G, et al. Novel nested saddle coils used in miniature atomic sensors[J]. AIP Advances, 2018, 8(7): 075126.
[16] KE Q, LUO W J, YAN G Z, et al. Analytical model and optimized design of power transmitting coil for inductively coupled endoscope robot[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(4): 694-706.
[17] GAO J Y, YAN G Z, WANG Z W, et al. A capsule robot powered by wireless power transmission: Design of its receiving coil[J]. Sensors and Actuators A: Physical, 2015, 234: 133-142.
[18] 庄浩宇, 颜国正, 赵凯, 等. 用于肠道机器人的螺旋式平板发射线圈对设计[J]. 光学精密工程, 2021, 29(1): 84-90.
[18] ZHUANG Haoyu, YAN Guozheng, ZHAO Kai, et al. Design of spiral flat transmitting coil pair for intestinal robot[J]. Optics and Precision Engineering, 2021, 29(1): 84-90.
[19] CHEN W W, YAN G Z, WANG Z W, et al. A wireless capsule robot with spiral legs for human intestine[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2014, 10(2): 147-161.
文章导航

/