新型电力系统与综合能源

基于量子蚁群算法的配电网故障区段快速定位技术

展开
  • 1.上海电力大学 计算机科学与技术学院,上海 201306
    2.上海交通大学 电力传输与功率变换控制教育部重点实验室,上海 200240
    3.上海海事大学 物流科学与工程研究院,上海 201306
    4.国网上海市电力公司电力科学研究院,上海 200437
毕忠勤(1977-),教授,从事云计算、数据处理和智能电网中的质量控制等研究.
王宝楠,讲师;E-mail:wbn_shu0099@163.com.

收稿日期: 2023-01-04

  修回日期: 2023-04-04

  录用日期: 2023-05-08

  网络出版日期: 2023-05-16

基金资助

电力传输与功率变换控制教育部重点实验室开放课题(2022AA02)

Fast Fault Location Technology for Distribution Network Based on Quantum Ant Colony Algorithm

Expand
  • 1. College of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 201306, China
    2. Key Laboratory of Control of Power Transmission and Conversion of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
    3. Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
    4. State Grid Shanghai Electric Power Research Institute, Shanghai 200437, China

Received date: 2023-01-04

  Revised date: 2023-04-04

  Accepted date: 2023-05-08

  Online published: 2023-05-16

摘要

分布式电源并入配电网已成为新型电力系统重要特征之一,分布式电源的接入与发电的不确定性使配电网潮流复杂多变,对配电网故障快速定位提出更高的技术要求.然而,现有智能优化算法在解决配电网故障区段定位问题时会出现收敛速度慢、易陷入局部最优等问题.针对这些挑战与问题,提出一种基于量子蚁群算法(QACA)的配电网故障区段快速定位技术.首先,根据状态逼近思想和最小故障集理论构建配电网故障定位的数学模型;其次,针对馈线终端单元上传信息缺失情况提出信息自修正方法,并提出分级定位模型来缩短定位时间;然后,提出3种改进技术对QACA进行针对性改进,改进量子旋转门更新机制,以函数控制形式动态调整旋转角大小,同时引入精英策略加快算法收敛速度.最后,在关键参数确定后验证了改进技术、信息自修正法、分级定位模型的有效性.将所提算法与7种不同算法进行对比,结果表明:改进的QACA可有效完成故障区段定位,具有良好的收敛速度、准确率以及容错性能.

本文引用格式

毕忠勤, 余晓婉, 王宝楠, 黄文焘, 张丹, 董真 . 基于量子蚁群算法的配电网故障区段快速定位技术[J]. 上海交通大学学报, 2024 , 58(5) : 693 -708 . DOI: 10.16183/j.cnki.jsjtu.2023.004

Abstract

Integration of distributed generations into distribution networks has become one of the important features of new power systems. The integration of distributed generation and the uncertainty of power generation make the power flow in distribution networks complex and variable, which poses higher technical requirements for rapid fault location in distribution networks. However, existing intelligent optimization algorithms may encounter problems such as slow convergence speed and susceptibility to local optimization when solving the problem of fault section location in distribution networks. To address these challenges and problems, a rapid fault section location technology based on quantum ant colony algorithm (QACA) is proposed. First, a location mathematical model is constructed based on the state approximation idea and the minimum fault set theory. Then, an information self-correction method is proposed for the missing information uploaded by feeder terminal unit, and a hierarchical location model is proposed to shorten the location time. Afterwards, three improvement techniques are proposed to improve the QACA. The update mechanism of the quantum rotary gate is improved, the rotation angle is dynamically adjusted in the form of function control, and the elite strategy is introduced to accelerate the convergence speed of the algorithm. Finally, after the key parameters are determined, the effectiveness of the improved technique, the information self-correction method, and the hierarchical positioning model is verified. A comparison with 7 different algorithms indicates that the improved QACA can effectively locate the fault section, and has a fast convergence speed, great accuracy, and fault tolerance.

参考文献

[1] 谭嘉, 李知艺, 杨欢, 等. 基于分布式优化思想的配电网用电负荷多层协同预测方法[J]. 上海交通大学学报, 2021, 55(12): 1544-1553.
  TAN Jia, LI Zhiyi, YANG Huan, et al. A multi-level collaborative load forecasting method for distribution networks based on distributed optimization[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1544-1553.
[2] 王守相, 宋丽可, 舒欣. 分布式电源与多元负荷高渗透接入的主动配电网自适应过流保护方案[J]. 高电压技术, 2019, 45(6): 1783-1794.
  WANG Shouxiang, SONG Like, SHU Xin. Adaptive overcurrent protection of active distribution network with high penetration of distributed generations and multiple loads[J]. High Voltage Engineering, 2019, 45(6): 1783-1794.
[3] 唐金锐, 尹项根, 张哲, 等. 配电网故障自动定位技术研究综述[J]. 电力自动化设备, 2013, 33(5): 7-13.
  TANG Jinrui, YIN Xianggen, ZHANG Zhe, et al. Survey of fault location technology for distribution networks[J]. Electric Power Automation Equipment, 2013, 33(5): 7-13.
[4] 邓丰, 梅龙军, 唐欣, 等. 基于时频域行波全景波形的配电网故障选线方法[J]. 电工技术学报, 2021, 36(13): 2861-2870.
  DENG Feng, MEI Longjun, TANG Xin, et al. Faulty line selection method of distribution network based on time-frequency traveling wave panoramic waveform[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2861-2870.
[5] SUN K M, CHEN Q, ZHAO P. Automatic faulted feeder section location and isolation method for power distribution systems considering the change of topology[J]. Energies, 2017, 10(8): 1081.
[6] 郑涛, 马龙, 李博文. 基于馈线终端装置信息畸变校正的有源配电网故障区段定位[J]. 电网技术, 2021, 45(10): 3926-3935.
  ZHENG Tao, MA Long, LI Bowen. Fault section location of active distribution network based on feeder terminal unit information distortion correction[J]. Power System Technology, 2021, 45(10): 3926-3935.
[7] 王飞, 孙莹. 配电网故障定位的改进矩阵算法[J]. 电力系统自动化, 2003, 27(24): 45-46.
  WANG Fei, SUN Ying. An improved matrix algorithm for fault location in distribution network of power systems[J]. Automation of Electric Power Systems, 2003, 27(24): 45-46.
[8] 郭利爽, 李凤婷, 赵新利, 等. 基于子网络划分的含DG配电网故障区段定位[J]. 电力系统保护与控制, 2020, 48(7): 76-84.
  GUO Lishuang, LI Fengting, ZHAO Xinli, et al. Fault section location for distribution network with DG based on sub-network partition[J]. Power System Protection & Control, 2020, 48(7): 76-84.
[9] 郭壮志, 陈涛, 徐其兴, 等. 配电网故障区段定位的互补松弛约束新模型与算法[J]. 电力自动化设备, 2020, 40(5): 129-137.
  GUO Zhuangzhi, CHEN Tao, XU Qixing, et al. Novel fault section location model for distribution network with complementary relaxation constraints and its algorithm[J]. Electric Power Automation Equipment, 2020, 40(5): 129-137.
[10] 孔培, 刘建锋, 周健, 等. 基于整数线性规划的配电网故障定位容错算法[J]. 电力系统保护与控制, 2020, 48(24): 27-35.
  KONG Pei, LIU Jianfeng, ZHOU Jian, et al. Fault-tolerant algorithm for fault location in distribution network based on integer linear programming[J]. Power System Protection & Control, 2020, 48(24): 27-35.
[11] 张健磊, 高湛军, 陈明, 等. 考虑复故障的有源配电网故障定位方法[J]. 电工技术学报, 2021, 36(11): 2265-2276.
  ZHANG Jianlei, GAO Zhanjun, CHEN Ming, et al. Fault location method for active distribution networks considering combination faults[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2265-2276.
[12] XIONG G J, YUAN X F, MOHAMED A W, et al. Improved binary gaining-sharing knowledge-based algorithm with mutation for fault section location in distribution networks[J]. Journal of Computational Design & Engineering, 2022, 9(2): 393-405.
[13] 吉兴全, 张朔, 张玉敏, 等. 基于IELM算法的配电网故障区段定位[J]. 电力系统自动化, 2021, 45(22): 157-166.
  JI Xingquan, ZHANG Shuo, ZHANG Yumin, et al. Fault section location for distribution network based on improved electromagnetism-like mechanism algorithm[J]. Automation of Electric Power Systems, 2021, 45(22): 157-166.
[14] 郑聪, 周海峰, 郑东强, 等. 基于改进多元宇宙算法的主动配电网故障定位方法研究[J]. 电力系统保护与控制, 2023, 51(2): 169-179.
  ZHENG Cong, ZHOU Haifeng, ZHENG Dongqiang, et al. An active distribution network fault location method based on improved multi-universe algorithm[J]. Power System Protection & Control, 2023, 51(2): 169-179.
[15] 杨国华, 冯骥, 柳萱, 等. 基于改进秃鹰搜索算法的含分布式电源配电网分区故障定位[J]. 电力系统保护与控制, 2022, 50(18): 1-9.
  YANG Guohua, FENG Ji, LIU Xuan, et al. Fault location of a distribution network hierarchical model with a distribution generator based on IBES[J]. Power System Protection & Control, 2022, 50(18): 1-9.
[16] 王宝楠, 水恒华, 王苏敏, 等. 量子退火理论及其应用综述[J]. 中国科学: 物理学力学天文学, 2021, 51(8): 5-17.
  WANG Baonan, SHUI Henghua, WANG Sumin, et al. Theories and applications of quantum annealing: A literature survey[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2021, 51(8): 5-17.
[17] 高锋阳, 李昭君, 袁成, 等. 量子计算和免疫优化算法相结合的有源配电网故障定位[J]. 高电压技术, 2021, 47(2): 396-406.
  GAO Fengyang, LI Zhaojun, YUAN Cheng, et al. Fault location for active distribution network based on quantum computing and immune optimization algorithm[J]. High Voltage Engineering, 2021, 47(2): 396-406.
[18] 张雅婷, 郭亮, 郭达, 等. 改进量子遗传算法在含分布式电源配电网中的应用[J]. 电测与仪表, 2023, 60(11): 130-135.
  ZHANG Yating, GUO Liang, GUO Da, et al. Application of improved quantum genetic algorithm in distribution network with distributed generation[J]. Electrical Measurement & Instrumentation, 2023, 60(11): 130-135.
[19] DAS M, ROY A, MAITY S, et al. A quantum-inspired ant colony optimization for solving a sustainable four-dimensional traveling salesman problem under type-2 fuzzy variable[J]. Advanced Engineering Informatics, 2023, 55: 101816.
[20] LI J J, XU B W, YANG Y S, et al. Quantum ant colony optimization algorithm for AGVs path planning based on Bloch coordinates of pheromones[J]. Natural Computing, 2020, 19(4): 673-682.
[21] 何小锋, 马良. 求解0-1背包问题的量子蚁群算法[J]. 计算机工程与应用, 2011, 47(16): 3.
  HE Xiaofeng, MA Liang. Quantum-inspired ant algorithm for solving 0-1 knapsack problem[J]. Computer Engineering & Applications, 2011, 47(16): 3.
[22] LIU M, ZHANG F, MA Y L, et al. Evacuation path optimization based on quantum ant colony algorithm[J]. Advanced Engineering Informatics, 2016, 30(3): 259-267.
[23] 周晓晔, 马小云, 朱梅琳. 机器人-人工拣选环境下混流装配线齐套物料配送优化[J]. 计算机集成制造系统, 2024, 30(4): 1527-1536.
  ZHOU Xiaoye, MA Xiaoyun, ZHU Meilin. Research on optimization of kitting material distribution of mixed-model assembly line under robot-operator picking environment[J]. Computer Intergiated Manufacturing Systems, 2024, 30(4): 1527-1536.
[24] 李絮, 刘争艳, 谭拂晓. 求解TSP的新量子蚁群算法[J]. 计算机工程与应用, 2011, 47(32): 42-44.
  LI Xu, LIU Zhengyan, TAN Fuxiao. Novel quantum ant colony algorithm for TSP[J]. Computer Engineering & Applications, 2011, 47(32): 42-44.
[25] HAN K H, KIM J H. Quantum-inspired evolutionary algorithms with a new termination criterion, H/sub/spl epsi//gate, and two-phase scheme[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(2): 156-169.
[26] 杜群, 甄成刚, 郝悍勇. 基于量子蚁群的快速碰撞检测算法研究[J]. 计算机仿真, 2019, 36(12): 209-213.
  DU Qun, ZHEN Chenggang, HAO Hanyong. Fast collision detection algorithm based on quantum ant colony[J]. Computer Simulation, 2019, 36(12): 209-213.
[27] ZHAO Y T, WANG J, XIE X L. Continuous ant colony algorithm based on entity and its convergence[C]// 2008 Second International Symposium on Intelligent Information Technology Application. Shanghai, China: IEEE, 2008: 80-84.
[28] 王秋杰, 金涛, 谭洪, 等. 基于分层模型和智能校验算法的配电网故障定位技术[J]. 电工技术学报, 2018, 33(22): 5327-5337.
  WANG Qiujie, JIN Tao, TAN Hong, et al. The technology on fault location of distribution network based on hierarchical model and intelligent checking algorithm[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5327-5337.
[29] 张颖, 周韧, 钟凯. 改进蚁群算法在复杂配电网故障区段定位中的应用[J]. 电网技术, 2011, 35(1): 224-228.
  ZHANG Ying, ZHOU Ren, ZHONG Kai. Application of improved ant colony algorithm in fault-section location of complex distribution network[J]. Power System Technology, 2011, 35(1): 224-228.
[30] 赵乔, 王增平, 董文娜, 等. 基于免疫二进制粒子群优化算法的配电网故障定位方法研究[J]. 电力系统保护与控制, 2020, 48(20): 83-89.
  ZHAO Qiao, WANG Zengping, DONG Wenna, et al. Research on fault location in a distribution network based on an immune binary particle swarm algorithm[J]. Power System Protection & Control, 2020, 48(20): 83-89.
[31] 邱彬, 罗添元, 宁博, 等. 基于BAS-IGA的含分布式电源配电网故障定位[J]. 电力系统及其自动化学报, 2021, 33(2): 8-14.
  QIU Bin, LUO Tianyuan, NING Bo, et al. Fault location of distribution network with distribution generations based on BAS-IGA[J]. Proceedings of the CSU-EPSA, 2021, 33(2): 8-14.
文章导航

/