机械与动力工程

核反应堆堆芯吊篮压紧弹簧松弛特性

展开
  • 1.上海交通大学 机械与动力工程学院,上海 200240
    2.中国核动力研究设计院,成都 610213
    3.宁夏大学 前沿交叉学院,银川 750021
杨泰波(1986-),副研究员,从事反应堆故障诊断与健康管理技术研究.
彭志科,教授;E-mail:z.peng@sjtu.edu.cn.

收稿日期: 2023-01-19

  修回日期: 2023-04-23

  录用日期: 2023-04-24

  网络出版日期: 2023-05-19

Relaxation Characteristics of Hold-Down Spring of Core Support Barrel in Nuclear Reactor

Expand
  • 1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Nuclear Power Institute of China, Chengdu 610213, China
    3. School of Advanced Interdisciplinary Studies, Ningxia University, Yinchuan 750021, China

Received date: 2023-01-19

  Revised date: 2023-04-23

  Accepted date: 2023-04-24

  Online published: 2023-05-19

摘要

核反应堆中堆芯吊篮的稳定性是反应堆正常运行的保障和前提.压紧弹簧作为堆芯吊篮的约束与支撑直接影响堆芯吊篮的振动特性.在高温、辐射等恶劣工况下,压紧弹簧力学性能会发生如应力松弛的退化,影响堆芯吊篮振动以及反应堆运行安全,因此需要对堆芯吊篮压紧弹簧松弛特性展开研究.首先,建立堆芯吊篮及压紧弹簧在内的装配体有限元模型,利用湿模态法分析并获得压紧弹簧松弛情况下的堆芯吊篮梁式模态振动频率的变化.然后,开展堆芯吊篮压紧弹簧松弛试验,试验结果验证了模型的有效性.进一步利用仿真模型生成更多压紧弹簧松弛影响下的堆芯吊篮梁式模态频率数据,结合试验数据建立堆芯吊篮压紧弹簧松弛程度识别的数学模型,为反应堆堆芯吊篮压紧弹簧松弛劣化监测奠定了技术基础.

本文引用格式

杨泰波, 刘佳鑫, 彭志科, 罗能, 刘才学 . 核反应堆堆芯吊篮压紧弹簧松弛特性[J]. 上海交通大学学报, 2024 , 58(8) : 1290 -1296 . DOI: 10.16183/j.cnki.jsjtu.2023.024

Abstract

The stability of the core support barrel (CSB) in a nuclear reactor is the guarantee and premise for the normal operation of the reactor core. As the constraint and support of the CSB, the hold-down spring (HDS) directly affects the vibration characteristics of the CSB. Under harsh conditions such as high temperature and radiation, degradation such as stress relaxation may occur in terms of the performance of the HDS, which will affect the vibration of the CSB and the operation security of the reactor. Therefore, it is necessary to study the relaxation characteristics of the HDS of the CSB. First, a finite element model including the CSB and the HDS is established. The wet modal method is adapted to analyze and obtain the change of the beam mode frequency of the CSB with the relaxation degradation of the HDS. Then, a relaxation test of the HDS of the CSB is conducted to verify the simulation results. The simulation model is further used to generate more beam mode frequency data of the CSB under the impact of different relaxation degrees of the HDS. Finally, combined with simulation and test data, a mathematical model for identifying the relaxation degree of the HDS of the CSB is established, which lays a technical foundation for monitoring the relaxation and degradation of the HDS of the CSB in nuclear reactor.

参考文献

[1] MALAPLATE J, GAVOILLE P, PAGEOT J, et al. Assessment of potential swelling of pressurized water reactor internals the Gondole experiment in Osiris reactor[C]// Fontevraud 9-Contribution of Materials Investigations and Operating Experience to Light Water NPPs’ Safety, Performance and Reliability. Avignon, France: CEA, 2018: cea-02338721.
[2] CARTER R D, DAMCOTT D L, ATZMON M, et al. Effects of proton irradiation on the microstructure and microchemistry of type 304L stainless steel[J]. Journal of Nuclear Materials, 1993, 205: 361-373.
[3] BRUEMMER S M, SIMONEN E P, SCOTT P M, et al. Radiation-induced material changes and susceptibility to intergranular failure of light-water-reactor core internals[J]. Journal of Nuclear Materials, 1999, 274(3): 299-314.
[4] 黄超, 许锋, 李世伟. 秦山核电厂堆内构件围板螺栓老化评估[J]. 核动力工程. 2022, 43(Sup.1): 16-21.
  HUANG Chao, XU Feng, LI Shiwei. Aging evaluation of baffle bolts for reactor internals of Qinshan nuclear power plant[J]. Nuclear Power Engineering, 2022, 43(Sup.1): 16-21.
[5] KENIK E A, BUSBY J T. Radiation-induced degradation of stainless steel light water reactor internals[J]. Materials Science & Engineering: R: Reports, 2012, 73(7/8): 67-83.
[6] XU C L, ZHANG L, QIAN W J, et al. The studies of irradiation hardening of stainless steel reactor internals under proton and xenon irradiation[J]. Nuclear Engineering & Technology, 2016, 48(3): 758-764.
[7] FOX A. Effect of temperature on stress relaxation of several metallic materials[M]//Residual stress and stress relaxation. Boston, USA: Springer, 1982: 181-203.
[8] KANG H G, SEONG P H. A real-time monitoring system of core support barrel vibration using FEM data and self-organizing neural networks[J]. Nuclear Engineering & Design, 1995, 158(1): 19-29.
[9] 赖姜, 何超, 席志德, 等. 反应堆吊篮在正常和劣化支撑条件下的振动模态特性[J]. 核动力工程. 2016, 37(Sup.2): 20-23.
  LAI Jiang, HE Chao, XI Zhide, et al. Vibration characteristics of a core barrel with conventional and unconventional core support barrel[J]. Nuclear Power Engineering, 2016, 37(Sup.2): 20-23.
[10] International Atomic Energy Agency. Assessment and management of ageing of major nuclear power plant components important to safety: PWR vessel internals[R]. Vienna, Italy: IAEA, 2007: IAEA-TECDOC-1557.
[11] WANG M, WANG L, JING J, et al. Study on the reactor core barrel instantaneous characteristics in case of Loss of Coolant Accident (LOCA) scenarios for loop-type PWR[J]. Nuclear Engineering & Design, 2017, 324: 93-102.
[12] JIRSA P. Monitoring of the VVER nuclear reactor internals[J]. Nuclear Engineering & Design, 1997, 168(1/2/3): 1-9.
[13] KANG H G, SEONG P H. A real-time monitoring system of core support barrel vibration using FEM data and self-organizing neural networks[J]. Nuclear Engineering & Design, 1995, 158(1): 19-29.
[14] 张波涛, 朱晔晨, 梅勇, 等. 平直条带流致振动特性实验及其数值模拟研究[J]. 上海交通大学学报, 2020, 54(1): 100-105.
  ZHANG Botao, ZHU Yechen, MEI Yong, et al. Experimental and numerical simulation study on flow-induced vibration characteristics of flat strip[J]. Journal of Shanghai Jiao Tong University, 2020, 54(1): 100-105.
[15] 陈宇峰, 陈务军, 何艳丽, 等. 柔性飞艇主气囊干湿模态分析与影响因素[J]. 上海交通大学学报, 2014, 48(2): 234-238.
  CHEN Yufeng, CHEN Wujun, HE Yanli, et al. Dry and wet modal analysis and evaluation of influencing factors for flexible airship envelop[J]. Journal of Shanghai Jiao Tong University, 2014, 48(2): 234-238.
[16] 黄磊, 丁宗华. CAP1400堆内构件压紧弹性环的优化设计[J]. 机械工程师, 2015(6): 123-125.
  HUANG Lei, DING Zonghua. Optimal design of CAP1400 RVI hold-down spring[J]. Mechanical Engineer, 2015(6): 123-125.
文章导航

/