新型电力系统与综合能源

基于模糊场景聚类的微电网两阶段优化配置

展开
  • 1.上海电力大学 电气工程学院, 上海 200090
    2.天津大学 电气自动化与信息工程学院, 天津 300072
    3.宁波电力设计院,浙江 宁波 315000
米阳(1976-),教授,从事微电网控制研究.

收稿日期: 2022-03-31

  修回日期: 2022-08-25

  录用日期: 2022-10-17

  网络出版日期: 2023-04-21

基金资助

国家重点研发计划(2018YFB1503001);上海市自然科学基金(22ZR1425500)

Two-Stage Optimal Configuration of Microgrid Based on Fuzzy Scene Clustering

Expand
  • 1. College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
    2. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
    3. Ningbo Electric Power Design Institute, Ningbo 315000, Zhejiang, China

Received date: 2022-03-31

  Revised date: 2022-08-25

  Accepted date: 2022-10-17

  Online published: 2023-04-21

摘要

针对极端天气会对微电网的稳定运行造成一定影响的问题,提出一种基于模糊场景聚类的微电网优化配置策略.利用历史天气数据,采用模糊场景聚类方法处理源侧天气的随机性导致新能源出力波动的问题;并在负荷侧建立鲁棒优化模型,处理一定范围内的负荷波动.利用一年中8 760 h的场景,区分模糊场景聚类所特有的隶属特征,得到典型场景和极端场景.考虑极端场景对微电网优化配置的影响,建立以综合成本最小的两阶段鲁棒模型,运用列和约束生成算法进行分解,最后用Cplex求解器迭代求解.仿真分析验证了所提优化配置策略的有效性与可行性.

本文引用格式

米阳, 李海鹏, 陈博洋, 彭建伟, 魏炜, 姚艳 . 基于模糊场景聚类的微电网两阶段优化配置[J]. 上海交通大学学报, 2023 , 57(9) : 1137 -1145 . DOI: 10.16183/j.cnki.jsjtu.2022.090

Abstract

Aimed at the impact of extreme weather on the stable operation of microgrid, an optimal configuration strategy of microgrid based on fuzzy scene clustering is proposed. Using historical weather data, a fuzzy scene clustering method is used to deal with the problem of new energy output fluctuations caused by random weather on the source side, and a robust optimization model is established on the load side to deal with load fluctuations within a certain range. Using scenes of 8 760 hours in a year, typical scenes and extreme scenes are obtained by distinguishing the unique membership characteristics of fuzzy scene clusters. Considering the impact of extreme scenarios on the optimal configuration of the microgrid, a two-stage robust model with the smallest comprehensive cost is established, which is decomposed by the column and constraint method, and is finally solved iteratively by Cplex solver. The effectiveness and feasibility of the proposed optimal configuration strategy are verified by simulation analysis.

参考文献

[1] 黄强, 郭怿, 江建华, 等. “双碳”目标下中国清洁电力发展路径[J]. 上海交通大学学报, 2021, 55(12): 1499-1509.
[1] HUANG Qiang, GUO Yi, JIANG Jianhua, et al. Development pathway of China’s clean electricity under carbon peaking and carbon neutrality goals[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1499-1509.
[2] 米阳, 王鹏, 邓锦, 等. 孤岛交直流混合微电网群分层协调控制[J]. 电力系统保护与控制, 2021, 49(20): 1-8.
[2] MI Yang, WANG Peng, DENG Jin, et al. Hierarchical coordinated control of island ac/dc hybrid microgrids[J]. Power System Protection and Control, 2021, 49(20): 1-8.
[3] 李玲芳, 陈占鹏, 胡炎, 等. 基于灵活性和经济性的可再生能源电力系统扩展规划[J]. 上海交通大学学报, 2021, 55(7): 791-801.
[3] LI Lingfang, CHEN Zhanpeng, HU Yan, et al. Expansion planning of renewable energy power system considering flexibility and economy[J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 791-801.
[4] 苏永新, 聂伟棋, 谭貌. 考虑风电接入和气电转换的综合能源系统日前区间优化[J]. 电力系统自动化, 2019, 43(17): 63-71.
[4] SU Yongxin, NIE Weiqi, TAN Mao. Day-ahead interval optimization of integrated energy system considering wind power integration and gas-to-electricity transformation[J]. Automation of Electric Power Systems, 2019, 43(17): 63-71.
[5] 徐岩, 陈泽雄, 于博文, 等. 基于机会约束的电动汽车充光储一体化充电站容量优化方法[J]. 智慧电力, 2021, 49(12): 25-30.
[5] XU Yan, CHEN Zexiong, YU Bowen, et al. Capacity optimization method of charging-PV-storage integrated station for electric vehicles[J]. Smart Power, 2021, 49(12): 25-30.
[6] LEI Y, WANG D, JIA H J, et al. Multi-objective stochastic expansion planning based on multi-dimensional correlation scenario generation method for regional integrated energy system integrated renewable energy[J]. Applied Energy, 2020, 276: 115395.
[7] 张靠社, 冯培基, 张刚, 等. 考虑机会约束的多能源微电网双层优化配置[J]. 太阳能学报, 2021, 42(8): 41-48.
[7] ZHANG Kaoshe, FENG Peiji, ZHANG Gang, et al. Bi-level optimization configuration method for multienergy microgrid considering chance constraints[J]. Acta Energiae Solaris Sinica, 2021, 42(8): 41-48.
[8] BILLIONNET A, COSTA M C, POIRION P L. Robust optimal sizing of a hybrid energy stand-alone system[J]. European Journal of Operational Research, 2016, 254(2): 565-575.
[9] 朱光远, 林济铿, 罗治强. 鲁棒优化在电力系统发电计划中的应用综述[J]. 中国电机工程学报, 2017, 37(20): 5881-5892.
[9] ZHU Guangyuan, LIN Jikeng, LUO Zhiqiang. Review of robust optimization for generation scheduling in power systems[J]. Proceedings of the CSEE, 2017, 37(20): 5881-5892.
[10] 周士超, 刘晓林, 熊展, 等. 考虑韧性提升的交直流配电网线路加固和储能配置策略[J]. 上海交通大学学报, 2021, 55(12): 1619-1630.
[10] ZHOU Shichao, LIU Xiaolin, XIONG Zhan, et al. Line hardening and energy storage system configuration strategies for resilience enhancement of a hybrid AC-DC distribution system[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1619-1630.
[11] 臧海祥, 马铭欣, 周亦洲, 等. 电力市场环境下风电-光热-生物质混合电站鲁棒优化调度模型[J]. 电力系统保护与控制, 2022, 50(5): 1-11.
[11] ZANG Haixiang, MA Mingxin, ZHOU Yizhou, et al. Robust optimal scheduling model for a “wind power-concentrating solar power-biomass” hybrid power plant in the electricity market[J]. Power System Protection & Control, 2022, 50(5): 1-11.
[12] 吴巍, 汪可友, 李国杰. 考虑风电时空相关性的仿射可调鲁棒机组组合[J]. 中国电机工程学报, 2017, 37(14): 4089-4097.
[12] WU Wei, WANG Keyou, LI Guojie. Affinely adjustable robust unit commitment considering the spatiotemporal correlation of wind power[J]. Proceedings of the CSEE, 2017, 37(14): 4089-4097.
[13] 陈庆攀, 刘洋, 许立雄. 含风电的电力系统鲁棒优化调度[J]. 电测与仪表, 2020, 57(8): 78-84.
[13] CHEN Qingpan, LIU Yang, XU Lixiong. Robust optimal dispatch of power system containing wind power[J]. Electrical Measurement & Instrumentation, 2020, 57(8): 78-84.
[14] 赵天阳, 陈奇芳, 张建华. 基于自适应鲁棒优化的互联微网能量/备用共享调度[J]. 电网技术, 2016, 40(12): 3783-3791.
[14] ZHAO Tianyang, CHEN Qifang, ZHANG Jianhua. Energy/reserve sharing dispatch for interconnected multiple microgrids based on adaptive robust optimization[J]. Power System Technology, 2016, 40(12): 3783-3791.
[15] 彭春华, 郑聪, 陈婧, 等. 基于置信间隙决策的综合能源系统鲁棒优化调度[J]. 中国电机工程学报, 2021, 41(16): 5593-5604.
[15] PENG Chunhua, ZHENG Cong, CHEN Jing, et al. Robust optimal scheduling of integrated energy systems based on confidence gap decision[J]. Proceedings of the CSEE, 2021, 41(16): 5593-5604.
[16] 袁洪涛, 韦钢, 张贺, 等. 计及充换储一体站的主动配电网鲁棒优化调度[J]. 中国电机工程学报, 2020, 40(8): 2453-2468.
[16] YUAN Hongtao, WEI Gang, ZHANG He, et al. Robust optimal scheduling of active distribution network considering with the charging-swapping-storage integrated station[J]. Proceedings of the CSEE, 2020, 40(8): 2453-2468.
[17] 桑博, 张涛, 刘亚杰, 等. 期望场景下的并网型微电网两阶段鲁棒优化调度[J]. 中国电机工程学报, 2020, 654(19): 6161-6173.
[17] SANG Bo, ZHANG Tao, LIU Yajie, et al. Two-stage robust optimal scheduling of grid-connected microgrid under expected scenarios[J]. Proceedings of the CSEE, 2020, 654(19): 6161-6173.
[18] 杨博, 俞磊, 王俊婷, 等. 基于自适应蝠鲼觅食优化算法的分布式电源选址定容[J]. 上海交通大学学报, 2021, 55(12): 1673-1688.
[18] YANG Bo, YU Lei, WANG Junting, et al. Optimal sizing and placement of distributed generation based on adaptive manta ray foraging optimization[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1673-1688.
[19] 宋福龙, 吴洲洋, 张艳, 等. 大规模风电下基于模糊场景聚类的网-储协调规划方法[J]. 电力自动化设备, 2018, 38(2): 74-80.
[19] SONG Fulong, WU Zhouyang, ZHANG Yan, et al. Fuzzy scene clustering based grid-energy storage coordinated planning method with large-scale wind power[J]. Electric Power Automation Equipment, 2018, 38(2): 74-80.
[20] 游广增, 汤翔鹰, 胡炎, 等. 基于典型运行场景聚类的电力系统灵活性评估方法[J]. 上海交通大学学报, 2021, 55(7): 802-813.
[20] YOU Guangzeng, TANG Xiangying, HU Yan, et al. Flexibility evaluation method for power system based on clustering of typical operating scenarios[J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 802-813.
文章导航

/