电子信息与电气工程

基于语义似然与高精度地图匹配的智能车辆同时定位与检测

  • 赖国良 ,
  • 胡钊政 ,
  • 周哲 ,
  • 万金杰 ,
  • 任靖渊
展开
  • 1.武汉理工大学 信息工程学院,武汉 430070
    2.武汉理工大学 智能交通系统研究中心,武汉 430063
    3.武汉理工大学 重庆研究院,重庆 401120
赖国良(1998—),硕士生,从事智能车辆定位研究.
胡钊政,教授,博士生导师;E-mail:zzhu@whut.edu.cn.

收稿日期: 2023-03-09

  修回日期: 2023-04-10

  录用日期: 2023-04-13

  网络出版日期: 2023-04-23

基金资助

国家重点研发计划(2022YFB2502904);湖北省重点研发计划项目(2022BAA082);重庆市科技创新重大研发项目(CSTB2020TIAD-STX0003);武汉市人工智能创新专项(2022010702040064)

Simultaneous Detection and Localization for Intelligent Vehicles Based on HD Map Matching and Semantic Likelihood Model

  • LAI Guoliang ,
  • HU Zhaozheng ,
  • ZHOU Zhe ,
  • WAN Jinjie ,
  • REN Jingyuan
Expand
  • 1. School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
    2. Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430063, China
    3. Chongqing Research Institute, Wuhan University of Technology, Chongqing 401120, China

Received date: 2023-03-09

  Revised date: 2023-04-10

  Accepted date: 2023-04-13

  Online published: 2023-04-23

摘要

车载传感器数据与高精度地图的精确匹配是提升智能车辆感知与定位的关键.提出基于语义似然模型(SLM)的高精度地图匹配新算法,实现智能车辆同时定位与目标检测任务.首先通过U-Net提取路面语义目标,利用核密度估计建立SLM.基于粒子滤波框架,利用位姿变换将高精度地图上目标抽样点映射至SLM中,计算该抽样点与传感器数据的匹配程度对每个粒子的权重更新,实现智能车辆的高精度定位.最后利用定位结果完成地图上的要素目标到图像的映射,实现目标的精准检测.利用在校园道路与城市道路环境下采集的数据对所提算法进行验证,实验结果表明,算法的平均定位误差约为14 cm,路面路标检测结果平均交并比(MIoU)均大于80.较之深度神经网络等当前最佳(SOTA)的检测方法,所提算法引入高精度地图的先验信息可显著提升智能车辆定位与目标检测性能.

本文引用格式

赖国良 , 胡钊政 , 周哲 , 万金杰 , 任靖渊 . 基于语义似然与高精度地图匹配的智能车辆同时定位与检测[J]. 上海交通大学学报, 2024 , 58(10) : 1618 -1628 . DOI: 10.16183/j.cnki.jsjtu.2023.086

Abstract

Accurate matching between in-vehicle sensor data and high-definition (HD) maps is crucial to improve the performance of perception and localization of intelligent vehicles. A novel algorithm of HD map matching based on the developed semantic likelihood model (SLM) is proposed to achieve intelligent vehicle localization and object detection simultaneously. First, semantic pavement objects are extracted from front-view images by using U-Net, and SLM is constructed with kernel density estimation (KDE). Under a particle filter framework, the likelihood between the sensor data and HD map is calculated by projecting each sample point from HD map with pose transformation onto SLM to update the weight of each particle. Simultaneously, accurate detection of pavement markings is accomplished by projecting all elements onto the HD map with the computed localization results. In the experiment, data collected on campus and on urban roads are used to validate the proposed algorithm. The experimental results show that the localization errors in both scenarios are about 14 cm, and the mean intersection over union (MIoU) of road marking detection is above 80. The results demonstrate that the proposed algorithm can significantly improve both localization and detection performance by effectively utilizing the prior information of HD maps, compared with the state of the art (SOTA) methods, such as deep learning-based detection methods.

参考文献

[1] JO H G, LEE W, KIM E. Mixture Density-PoseNet and its application to monocular camera-based global localization[J]. IEEE Transactions on Industrial Informatics, 2021, 17(1): 388-397.
[2] MA Y F, WANG Z Y, YANG H, et al. Artificial intelligence applications in the development of autonomous vehicles: A survey[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(2): 315-329.
[3] 中国科学技术协会. 中科协发布2020重大科学问题和工程技术难题[EB/OL]. (2020-08-16)[2023-03-09]. https://www.cast.org.cn/art/2020/8/16/art_90_130822.html.
  China Association for Science and Technology. 2020 CAST releases 2020 major scientific and engineeringtechnical challenges[EB/OL]. (2020-08-16)[2023-03-09]. https://www.cast.org.cn/art/2020/8/16/art_90_130822.html.
[4] ZHONG H X, WANG R. A visual-degradation-inspired model with HSV color-encoding for contour detection[J]. Journal of Neuroscience Methods, 2022, 369(1): 1-12.
[5] BEN C, BUSHNAG A. Color edge detection using multidirectional sobel filter and fuzzy fusion[J]. Computers, Materials & Continua, 2023, 2(2): 2839-2852.
[6] NEVEN D, DE B, GEORGOULIS S, et al. Towards end-to-end lane detection: An instance segmentation approach[C]// IEEE Intelligent Vehicles Symposium (IV). Jiangsu, China: IEEE, 2018: 286-291.
[7] JANG W, HYUN J, AN J, et al. A lane-level road marking map using a monocular camera[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(1): 187-204.
[8] CAMPOS C, ELVIRA R, RODRíGUEZ J J G, et al. ORB-SLAM3: An accurate open-source library for visual, visual-inertial, and multimap SLAM[J]. IEEE Transactions on Robotics, 2021, 37(6): 1874-1890.
[9] LIU R, WANG J L, ZHANG B Q. High definition map for automated driving: Overview and analysis[J]. Journal of Navigation, 2020, 73(2): 324-341.
[10] 胡兵, 杨明, 郭林栋, 等. 基于地面快速鲁棒特征的智能车全局定位方法[J]. 上海交通大学学报, 2019, 53(2): 203-208.
  HU Bing, YANG Ming, GUO Lindong, et al. Global localization for intelligent vehicle using ground SURF[J]. Journal of Shanghai Jiao Tong University, 2019, 53(2): 203-208.
[11] CUI D, XUE J, ZHENG N. Real-time global localization of robotic cars in lane level via lane marking detection and shape registration[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 17(4): 1039-1050.
[12] 王相龙, 胡钊政, 李祎承, 等. 基于路面指纹的高精度车辆定位[J]. 交通运输系统工程与信息, 2018, 18(4): 38-45.
  WANG Xianglong, HU Zhaozheng, LI Yicheng, et al. High accuracy vehicle localization by referring to pavement fingerprint[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(4): 38-45.
[13] LIN C, LIAN F L. System integration of sensor-fusion localization tasks using vision-based driving lane detection and road-marker recognition[J]. IEEE Systems Journal, 2020, 14(3): 4523-4534.
[14] XIAO Z Y, YANG D G, WEN T P, et al. Monocular localization with Vector HD Map (MLVHM): A low-cost method for commercial IVs[J]. Sensors, 2020, 20(7): 1870-1-24.
[15] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-assisted Intervention. Munich, Germany: Springer, 2015: 234-241.
[16] ASAM. ASAM OpenDRIVE[EB/OL]. (2020-11-14)[2023-03-09]. https://www.asam.net/standards/detail/opendrive/.
[17] THRUN S. Probabilistic robotics[J]. Communications of the ACM, 2002, 45(3): 52-57.
[18] 国家市场监督管理总局, 国家标准化管理委员会. 道路交通标志和标线. 第2部分:道路交通标志. GB 5768.2—2022[S]. 北京: 中国标准出版社, 2022.
  State Administration for Market Regulation, Standardization Administration of China. Road traffic signs and markings. Part 2:Road traffic signs. GB 5768.2—2022[S]. Beijing: Standards Press of China, 2022.
[19] ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
[20] CAO H, WANG Y, CHENG J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[C]// European Conference on Computer Vision. Cham, Switzerland: Springer Nature Switzerland, 2022: 205-218.
[21] LIN S C, LEE H W, HSIEH Y H, et al. Masked attention ConvNeXt Unet with Multi-Synthesis dynamic weighting for anomaly detection and localization[C]// British Machine Vision Conference. Aberdeen, England: Machine Translation Springer, 2023: 722-735.
文章导航

/