新型电力系统与综合能源

双馈风电场抑制电网低频振荡的自适应附加控制策略

展开
  • 1.华北水利水电大学 电力学院,郑州 450011
    2.广东工业大学 自动化学院,广州 510006
    3.贵州大学 电气工程学院,贵阳 550025
刘新宇(1976-),副教授,从事控制理论与控制工程、新能源发电与智能电网、模式识别与智能系统研究. E-mail:lxy@ncwu.edu.cn.

收稿日期: 2022-05-03

  修回日期: 2022-06-28

  录用日期: 2022-11-28

  网络出版日期: 2023-04-26

基金资助

河南省高等学校重点科研项目(21A120006)

An Adaptive Additional Control Strategy for Suppressing Low-Frequency Grid Oscillations in Doubly-Fed Wind Farms

Expand
  • 1. School of Electric Power, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
    2. School of Automation, Guangdong University of Technology, Guangzhou 510006, China
    3. The Electrical Engineering College, Guizhou University, Guiyang 550025, China

Received date: 2022-05-03

  Revised date: 2022-06-28

  Accepted date: 2022-11-28

  Online published: 2023-04-26

摘要

针对大型风电场跨区输送电能时引起的弱或负阻尼低频振荡问题,提出一种基于李雅普诺夫稳定性理论的快速终端滑模附加阻尼控制策略.研究双馈风力发电机(DFIG)灵活的功率调控特性和快速响应阻尼调节能力,根据DFIG转子外加电压与磁链之间的关系和滑模变结构控制方法设计转子磁链控制器.在系统发生低频振荡时,期望磁链值与实际磁链值产生偏差,附加阻尼控制器输出一个自适应控制信号到转子侧功率控制环节,提高风电场有功出力,抑制系统的低频振荡.在MATLAB/Simulink中建立风电并网系统仿真模型进行离线仿真实验,并搭建基于实时数字仿真系统的大型风电场跨区输电模型进行实时仿真验证.离线仿真和实时仿真结果均表明:当系统发生低频振荡时,应用所提控制方法能够快速调节DFIG发出有功功率,增强系统的阻尼水平,有效抑制系统低频振荡抑制.

本文引用格式

刘新宇, 王森, 曾龙, 原绍恒, 郝正航, 逯芯妍 . 双馈风电场抑制电网低频振荡的自适应附加控制策略[J]. 上海交通大学学报, 2023 , 57(9) : 1156 -1164 . DOI: 10.16183/j.cnki.jsjtu.2022.135

Abstract

Aiming at the problem of weakly or negatively damped low-frequency oscillations caused by cross-zone transmission of electricity from large wind farms, this paper proposes a fast terminal sliding-mode additional damping controller based on the Lyapunov stability theory. By investigating the flexible power regulation characteristics and the capability of dynamic frequency response to damping regulation of doubly-fed wind turbines (DFIG), a rotor magnetic chain controller is designed according to the relationship between the applied voltage and magnetic chain of DFIG rotor and the sliding mode variable structure control method. When low-frequency oscillations occur in the system, the desired magnetic chain value will deviate from the actual magnetic chain value. The additional damping controller outputs an adaptive control signal for the rotor-side power control link to increase the active output of the wind farm and suppress low-frequency oscillations in the system. A simulation model of the wind power grid-connected system is established in MATLAB/Simulink for off-line simulations, and a real-time simulation experiment of a large wind farm cross-zone transmission model based on real time digital simulation system is conducted. The results of both off-line and real-time simulations show that when low-frequency oscillations occur in the system, the proposed control method can quickly regulate the active power emitted by the DFIG and enhance the damping level of the system, which is effective in suppressing low-frequency oscillations in the system.

参考文献

[1] 郝正航, 余贻鑫, 曾沅. 改善电力系统阻尼特性的双馈风电机组控制策略[J]. 电力系统自动化, 2011, 35(15): 25-29.
[1] HAO Zhenghang, YU Yixin, ZENG Yuan. A control strategy for increasing power system damping with wind turbine-driven doubly-fed induction generator[J]. Automation of Electric Power Systems, 2011, 35(15): 25-29.
[2] 和萍, 陈婕, 耿斯涵, 等. FACTS装置对含风电互联系统低频振荡特性分析[J]. 电力系统保护与控制, 2020, 48(8): 86-95.
[2] HE Ping, CHEN Jie, GENG Sihan, et al. Analysis of FACTS device on low-frequency oscillation characteristics of a power system with wind farm integration[J]. Power System Protection & Control, 2020, 48(8): 86-95.
[3] LIU H K, XIE X R, HE J B, et al. Subsynchronous interaction between direct-drive PMSG based wind farms and weak AC networks[J]. IEEE Transactions on Power Systems, 2017, 32(6): 4708-4720.
[4] LI Y, FAN L L, MIAO Z X. Wind in weak grids: Low-frequency oscillations, subsynchronous oscillations, and torsional interactions[J]. IEEE Transactions on Power Systems, 2020, 35(1): 109-118.
[5] ISBEIH Y J, EL MOURSI M S, XIAO W D, et al. Mixed-sensitivity robust control design for damping low-frequency oscillations with DFIG wind power generation[J]. IET Generation, Transmission & Distribution, 2019, 13(19): 4274-4286.
[6] 杨蕾, 盛师贤, 郭成, 等. 应用附加阻尼抑制风电接入后电网的低频振荡策略研究[J]. 电工技术, 2020(21): 72-77.
[6] YANG Lei, SHENG Shixian, GUO Cheng, et al. Application of additional damping to suppress low-frequency oscillation strategy of the grid after wind power access[J]. Electrical Engineering, 2020(21): 72-77.
[7] 王鹏, 李啸骢, 田烨杰, 等. 双馈风电机组抑制电力系统低频振荡的非线性控制策略[J]. 电气开关, 2019, 57(6): 14-18.
[7] WANG Peng, LI Xiaocong, TIAN Yejie, et al. Nonlinear control strategy for doubly-fed wind turbines to suppress low-frequency oscillations in power systems[J]. Electrical Switchgear, 2019, 57(6): 14-18.
[8] 李生虎, 张浩. 风电系统振荡模式对DFIG-PSS传递函数的灵敏度分析[J]. 电力系统保护与控制, 2020, 48(16): 11-17.
[8] LI Shenghu, ZHANG Hao. Sensitivity analysis of the oscillation modes to the transfer function of DFIG-PSS in a wind power system[J]. Power System Protection & Control, 2020, 48(16): 11-17.
[9] YAO J, ZHANG T, WANG X, et al. Control strategy for suppressing the shafting oscillation of the grid-connected DFIG-based wind power generation system[J]. International Transactions on Electrical Energy Systems, 2019, 29(9): e12053.
[10] CAI G W, CHEN X S, SUN Z L, et al. A coordinated dual-channel wide area damping control strategy for a doubly-fed induction generator used for suppressing inter-area oscillation[J]. Applied Sciences, 2019, 9(11): 2353.
[11] GUPTA A K, VERMA K, NIAZI K R. Robust coordinated control for damping low frequency oscillations in high wind penetration power system[J]. International Transactions on Electrical Energy Systems, 2019, 29(5): e12006.
[12] 张萌. 计及双馈风机接入的电力系统阻尼控制[D]. 大连: 大连理工大学, 2021.
[12] ZHANG Meng. The research on damping control for power system with doubly-fed induction generator connected[D]. Dalian: Dalian University of Technology, 2021.
[13] MA Y F, LIU J, LIU H H, et al. Active-reactive additional damping control of a doubly-fed induction generator based on active disturbance rejection control[J]. Energies, 2018, 11(5): 1314.
[14] 聂永辉, 徐晗桐, 蔡国伟, 等. 含双馈风电机组系统的广域阻尼控制器协调优化策略[J]. 电力自动化设备, 2020, 40(10): 79-84.
[14] NIE Yonghui, XU Hantong, CAI Guowei, et al. Coordinated optimal strategy of wide-area damping controller in doubly-fed wind turbine system[J]. Electric Power Automation Equipment, 2020, 40(10): 79-84.
[15] 张宁宇, 刘建坤, 陈静, 等. 基于柔性负荷及UPFC的低频振荡抑制策略[J]. 电力系统保护与控制, 2019, 47(10): 82-87.
[15] ZHANG Ningyu, LIU Jiankun, CHEN Jing, et al. Low-frequency oscillation suppression method based on flexible load and UPFC[J]. Power System Protection & Control, 2019, 47(10): 82-87.
[16] 廖凯. 抑制电力系统低频振荡的双馈风电机组控制策略研究[D]. 成都: 西南交通大学, 2016.
[16] LIAO Kai. Power system oscillations damping control strategy for doubly fed induction generator[D]. Chengdu: Southwest Jiaotong University, 2016.
[17] 王鹏. 双馈风电机组抑制电力系统低频振荡的控制策略研究[D]. 南宁: 广西大学, 2019.
[17] WANG Peng. Research on control strategy of doubly-fed wind turbine to suppress low-frequency oscillation of power system[D]. Nanning: Guangxi University, 2019.
[18] 荣飞, 李培瑶, 周诗嘉. 双馈风电场损耗最小化的有功无功协调优化控制[J]. 电工技术学报, 2020, 35(3): 520-529.
[18] RONG Fei, LI Peiyao, ZHOU Shijia. Coordinated optimal control with loss minimization for active and reactive power of doubly fed induction generator-based wind farm[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 520-529.
[19] 朱晓荣, 张建超, 王毅. 基于广域测量信号的双馈风电机组阻尼控制策略[J]. 电测与仪表, 2015, 52(20): 57-64.
[19] ZHU Xiaorong, ZHANG Jianchao, WANG Yi. WAMS-based damping control strategy of doubly-fed induction generator[J]. Electrical Measurement & Instrumentation, 2015, 52(20): 57-64.
[20] 潘峰, 闫庚龙, 苑伟华, 等. 基于双滑模的永磁同步电机直接转矩控制[J]. 电工技术学报, 2018, 33(Sup.2): 427-433.
[20] PAN Feng, YAN Genglong, YUAN Weihua, et al. Research on direct torque control for permanent magnet synchronous motor based on the double sliding mode[J]. Transactions of China Electrotechnical Society, 2018, 33(Sup.2): 427-433.
文章导航

/