机械与动力工程

机载批量灭火袋高空抛洒落地分布特性的模拟与实验验证

展开
  • 1.中国航空研究院研究生院,北京 100012
    2.中国商飞上海飞机设计研究院,上海 201210
    3.上海交通大学 机械与动力工程学院,上海 200240
吴 洋(1982-),研究员,从事飞行器设计研究.
胡海涛,副教授,博士生导师,电话(Tel.):021-34207062;E-mail:huhaitao2001@sjtu.edu.cn.

收稿日期: 2023-01-11

  修回日期: 2023-04-03

  录用日期: 2023-04-23

  网络出版日期: 2023-05-09

基金资助

国家自然科学基金(51976115);上海市启明星项目扬帆专项(22YF1459700);上海市自然科学基金(23ZR1478900)

Simulation and Experimental Validation of Landing Distribution Characteristics of Aircraft Mass Fire Extinguishing Bags Sprayed at High Altitude

Expand
  • 1. The Postgraduate Education of Chinese Aeronautical Establishment, Beijing 100012, China
    2. COMAC Shanghai Aircraft Design and Research Institute, Shanghai 201210, China
    3. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2023-01-11

  Revised date: 2023-04-03

  Accepted date: 2023-04-23

  Online published: 2023-05-09

摘要

为了对灭火飞机高空抛洒系统进行优化设计,必须建立反映飞行过程机载批量灭火袋高空抛洒落地机理的模型.基于离散元方法和计算流体力学方法,建立了机载批量灭火袋高空抛洒落地特性机理模型,获得不同飞行速度和高度下的灭火袋抛洒特性及落地分布,通过实验对模型进行了验证.抛洒落地分布的模拟结果与实验数据偏差在20.0%以内.研究成果为飞机高空灭火系统研制提供理论模型,以显著提升灭火飞机喷洒系统的灭火效果.

本文引用格式

吴洋, 林东, 孙浩然, 吴成云, 屈元元, 李旋, 胡海涛, 陈迎春 . 机载批量灭火袋高空抛洒落地分布特性的模拟与实验验证[J]. 上海交通大学学报, 2024 , 58(8) : 1264 -1270 . DOI: 10.16183/j.cnki.jsjtu.2023.014

Abstract

In order to optimize the design of high-altitude sprinkling system of fire-fighting aircraft, it is necessary to establish a model reflecting the high-altitude spraying and distribution mechanism of mass fire extinguishing bags during the flight. Based on the discrete element method and the computational fluid dynamics method, a high-altitude spraying and distributing model of aircraft mass fire extinguishing bags is established, and the spraying characteristics and landing area distribution at different flight speeds and altitudes are obtained. The model is verified by experiments. The deviations between simulated landing distribution and experimental data are less than 20.0%. The research results provide a theoretical model for the development of aircraft high altitude fire extinguishing system, so as to significantly improve the fire extinguishing performance of aircraft spraying system.

参考文献

[1] CLEARY W, SKORUPA J, BONNAR T. Aerial delivery system: US 9138604[P]. 2016.04.13[2023.01.10].
[2] ALKAHER S, LEWITUS D, OPHIR A, et al. Method and system for delivering biodegradable shelled portions: WO 2019/003223 A1[P]. 2019.01.03[2023.01.10].
[3] 刘浩, 孙建红, 孙智, 等. 波浪条件下地效翼型气动力的环量控制研究[J]. 上海交通大学学报, 2022, 56(8): 1101-1110.
  LIU Hao, SUN Jianhong, SUN Zhi, et al. Circulation control of airfoil aerodynamic force under ground effect of wavy wall[J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 1101-1110.
[4] 沈国辉, 张帅光, 楼文娟, 等. 考虑风攻角的硬跳线气动力系数和风偏计算[J]. 振动与冲击, 2021, 40(13): 1-8.
  SHEN Guohui, ZHANG Shuaiguang, LOU Wenjuan, et al. Calculation of aerodynamic coefficient and windage of hard jumper considering wind attack angle[J]. Journal of Vibration and Shock, 2021, 40(13): 1-8.
[5] 张宇婷, 耿小凯, 任春华, 等. 无伞空投储液罐的高空跌落仿真分析[J]. 包装工程, 2022, 43(1): 66-74.
  ZHANG Yuting, GENG Xiaokai, REN Chunhua, et al. Simulation analysis of liquid storage tank for free drop[J]. Packaging Engineering, 2022, 43(1): 66-74.
[6] 孙旺, 南英, 曾冠霖, 等. 无伞空投影响因素敏感性及载机安全性分析[J]. 计算机仿真, 2022, 38(4): 35-40.
  SUN Wang, NAN Ying, ZENG Guanlin, et al. Analysis of sensitivity of influencing factors for parachute-free airdrop and safety for aircraft[J]. Computer Simulation, 2022, 38(4): 35-40.
[7] 赵正戴, 南英, 谢如恒. 无伞空投体自身特性对落点精度的敏感性分析[J]. 指挥控制与仿真, 2019, 41(6): 68-73.
  ZHAO Zhengdai, NAN Ying, XIE Ruheng. Sensitivity analysis of landing accuracy of low altitude parachute-free airdrops[J]. Command Control & Simulation, 2019, 41(6): 68-73.
[8] XU B, CHEN J. Review of modeling and control during transport airdrop process[J]. International Journal of Advanced Robotic Systems, 2016(13): 13-18.
[9] 曾冠霖, 谢如恒, 南英, 等. 无伞空投最优投放点计算方法研究[J]. 机械制造与自动化, 2020, 49(2): 188-190.
  ZENG Guanlin, XIE Ruheng, NAN Ying, et al. Optimization of parachute-free airdrop[J]. Machine Building & Automation, 2020, 49(2): 188-190.
[10] 刘义伦, 刘思琪, 赵先琼, 等. 偏心楔形喂料斗卸料过程中颗粒流动特性[J]. 化工学报, 2018, 69(4): 1469-1475.
  LIU Yilun, LIU Siqi, ZHAO Xianqiong, et al. Flow characteristics of granule discharged from eccentric wedge-shaped feed hopper[J]. CIESC Journal, 2018, 69(4): 1469-1475.
[11] MINDLIN R, DERESIEWICZ H. Elastic spheres in contact under varying oblique force[J]. Journal of Applied Mechanics, 1953, 20: 327-344.
[12] HERTZ H. On the contact of elastic solids[J]. Journal Fur Die Reine Und Angewandte Mathematik, 1882, 92: 156-171.
[13] LAUNDER B, SPALDING D. Lectures in mathematical models of turbulence[M]. London, UK: Academic Press, 1972.
[14] 毛佳, 肖景文, 赵兰浩, 等. 基于浸入边界法的高解析度 CFD-DEM流固耦合方法[J]. 上海交通大学学报, 2023, 57(8): 988-995.
  MAO Jia, XIAO Jingwen, ZHAO Lanhao, et al. A resolved CFD-DEM approach based on the immersed boundary method[J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 988-995.
[15] 李铁男, 赵碧丹, 赵鹏, 等. 气固流化床启动阶段挡板内构件受力特性的CFD-DEM模拟[J]. 化工学报, 2022, 73(6): 2649-2661.
  LI Tienan, ZHAO Bidan, ZHAO Peng, et al. CFD-DEM simulation of the force acting on immersed baffles during the start-up stage of a gas-solid fluidized bed[J]. CIESC Journal, 2022, 73(6): 2649-2661.
文章导航

/