计及电动汽车充电方式与多能耦合的综合能源系统低碳经济优化运行
收稿日期: 2022-09-19
修回日期: 2023-01-02
录用日期: 2023-02-06
网络出版日期: 2023-04-11
基金资助
国家自然科学基金项目(51977039)
Low Carbon Economy Optimization of Integrated Energy System Considering Electric Vehicle Charging Mode and Multi-Energy Coupling
Received date: 2022-09-19
Revised date: 2023-01-02
Accepted date: 2023-02-06
Online published: 2023-04-11
为使多能耦合的综合能源系统(IES)在低碳经济运行下可满足负荷多样性的需求,提出一种在电动汽车(EV)不同充电方式下多能耦合的IES低碳经济运行双层优化配置方法.首先,搭建涵盖冷-热-电-气耦合的IES模型.然后,在日内调度运行阶段考虑阶梯碳交易机制以及EV不同充电方式等因素,实现日调度成本最低;在配置规划阶段以设备投资成本与年运行费用总和最低为目标配置设备容量.最后,利用Cplex求解上述两阶段目标函数并通过相互迭代得到最优配置方案与调度结果.结果表明:考虑剩余电量的EV充电方式与碳交易机制能显著降低碳排放量与系统运行成本,所提配置方法可实现多能耦合的IES低碳经济运行.
张程, 匡宇, 陈文兴, 郑杨 . 计及电动汽车充电方式与多能耦合的综合能源系统低碳经济优化运行[J]. 上海交通大学学报, 2024 , 58(5) : 669 -681 . DOI: 10.16183/j.cnki.jsjtu.2022.364
In order to enable a multi-energy coupling integrated energy system (IES) to meet the needs of load diversity in low-carbon economic operation, a bi-level optimal configuration method for low-carbon economic operation of multi-energy coupling IES in different charging modes of electric vehicles (EVs) is proposed. First, an IES including cold-thermal-electric-gas coupling is established. Then, in the day-to-day operation stage, factors such as hierarchical carbon trading mechanism and different charging modes of EVs are considered to achieve the lowest daily scheduling cost. In the configuration planning stage, based on the daily operation cost, the equipment capacity is configured with the lowest equipment investment cost and annual operation cost. Finally, Cplex is used to solve the above two-stage objective functions and obtain the optimal configuration scheme and scheduling results through mutual iteration. The results show that the charging method considering the remaining charge of EVs and carbon trading mechanism can significantly reduce carbon emissions and operating costs of the system. The proposed configuration approach can well realize low-carbon economic operation of the multi-energy coupling IES.
[1] | 臧海祥, 耿明昊, 黄蔓云, 等. 电-热-气混联综合能源系统状态估计研究综述与展望[J]. 电力系统自动化, 2022, 46(7): 187-199. |
ZANG Haixiang, GENG Minghao, HUANG Manyun, et al. Review and prospect of state estimation for electricity-heat-gas integrated energy system[J]. Automation of Electric Power Systems, 2022, 46(7): 187-199. | |
[2] | 孙宏斌, 潘昭光, 郭庆来. 多能流能量管理研究: 挑战与展望[J]. 电力系统自动化, 2016, 40(15): 1-8. |
SUN Hongbin, PAN Zhaoguang, GUO Qinglai. Energy management for multi-energy flow: Challenges and prospects[J]. Automation of Electric Power Systems, 2016, 40(15): 1-8. | |
[3] | 吴建中. 欧洲综合能源系统发展的驱动与现状[J]. 电力系统自动化, 2016, 40(5): 1-7. |
WU Jianzhong. Drivers and state-of-the-art of integrated energy systems in Europe[J]. Automation of Electric Power Systems, 2016, 40(5): 1-7. | |
[4] | 程浩忠, 胡枭, 王莉, 等. 区域综合能源系统规划研究综述[J]. 电力系统自动化, 2019, 43(7): 2-13. |
CHENG Haozhong, HU Xiao, WANG Li, et al. Review on research of regional integrated energy system planning[J]. Automation of Electric Power Systems, 2019, 43(7): 2-13. | |
[5] | 李健强, 余光正, 汤波, 等. 考虑风光利用率和含氢能流的多能流综合能源系统规划[J]. 电力系统保护与控制, 2021, 49(14): 11-20. |
LI Jianqiang, YU Guangzheng, TANG Bo, et al. Multi-energy flow integrated energy system planning considering wind and solar utilization and containing hydrogen energy flow[J]. Power System Protection & Control, 2021, 49(14): 11-20. | |
[6] | 魏震波, 任小林, 黄宇涵. 考虑综合需求侧响应的区域综合能源系统多目标优化调度[J]. 电力建设, 2020, 41(7): 92-99. |
WEI Zhenbo, REN Xiaolin, HUANG Yuhan. Multi-objective optimal dispatch for integrated energy system considering integrated demand response[J]. Electric Power Construction, 2020, 41(7): 92-99. | |
[7] | 陈健, 张维桐, 林达, 等. 基于改进交替方向乘子法的电-气-热系统分布式优化调度[J]. 电力系统自动化, 2019, 43(7): 50-58. |
CHEN Jian, ZHANG Weitong, LIN Da, et al. Distributed optimal dispatch of integrated electricity-gas-heating system based on improved alternative direction multiplier method[J]. Automation of Electric Power Systems, 2019, 43(7): 50-58. | |
[8] | 崔杨, 闫石, 仲悟之, 等. 含电转气的区域综合能源系统热电优化调度[J]. 电网技术, 2020, 44(11): 4254-4263. |
CUI Yang, YAN Shi, ZHONG Wuzhi, et al. Optimal thermoelectric dispatching of regional integrated energy system with power-to-gas[J]. Power System Technology, 2020, 44 (11): 4254-4263. | |
[9] | 黄宏旭, 梁睿, 张小彤, 等. 计及碳约束下的煤矿综合能源系统多目标配置双层优化[J]. 电网技术, 2022, 46(5): 1731-1741. |
HUANG Hongxu, LIANG Rui, ZHANG Xiaotong, et al. Two-stage multi-objective deployment optimization approach of coal mine integrated energy system considering carbon emission constraints[J]. Power System Technology, 2020, 46(5): 1731-1741. | |
[10] | 王磊, 姜涛, 宋丹, 等. 基于灵活热电比的区域综合能源系统多目标优化调度[J]. 电力系统保护与控制, 2021, 49(8): 151-159. |
WANG Lei, JIANG Tao, SONG Dan, et al. Multi-objective optimal dispatch of a regional integrated energy system based on a flexible heat-to-electric ratio[J]. Power System Protection & Control, 2021, 49(8): 151-159. | |
[11] | CHEN J, HUANG S J, SHAHABI L. Economic and environmental operation of power systems including combined cooling, heating, power and energy storage resources using developed multi-objective grey wolf algorithm[J]. Applied Energy, 2021, 298: 117257. |
[12] | 董海鹰, 贠韫韵, 马志程, 等. 计及多能转换及光热电站参与的综合能源系统低碳优化运行[J]. 电网技术, 2020, 44(10): 3689-3699. |
DONG Haiying, YUN Yunyun, MA Zhicheng, et al. Low-carbon optimal operation of integrated energy system considering multi-energy conversion and concentrating solar power plant participation[J]. Power System Technology, 2020, 44(10): 3689-3699. | |
[13] | 李鹏, 韩建沛, 殷云星, 等. 电转氢作为灵活性资源的微网容量多目标优化配置[J]. 电力系统自动化, 2019, 43(17): 28-35. |
LI Peng, HAN Jianpei, YIN Yunxing, et al. Multi-objective optimal configuration of microgrid with power to hydrogen as flexible resource[J]. Automation of Electric Power Systems, 2019, 43(17): 28-35. | |
[14] | ZHANG R F, JIANG T, LI F X, et al. Bi-level strategic bidding model for P2G facilities considering a carbon emission trading scheme-embedded LMP and wind power uncertainty[J]. International Journal of Electrical Power & Energy Systems, 2021, 128: 106740. |
[15] | 卫志农, 张思德, 孙国强, 等. 基于碳交易机制的电—气互联综合能源系统低碳经济运行[J]. 电力系统自动化, 2016, 40(15): 9-16. |
WEI Zhinong, ZHANG Side, SUN Guoqiang, et al. Carbon trading based low-carbon economic operation for integrated electricity and natural gas energy system[J]. Automation of Electric Power Systems, 2016, 40(15): 9-16. | |
[16] | REGUFE M J, PEREIRA A, FERREIRA A F P. Current developments of carbon capture storage and/or utilization-looking for net-zero emissions defined in the Paris agreement[J]. Energies, 2021, 14(9): 2406. |
[17] | 吕祥梅, 刘天琪, 刘绚, 等. 考虑高比例新能源消纳的多能源园区日前低碳经济调度[J]. 上海交通大学学报, 2021, 55(12): 1586-1597. |
LU Xiangmei, LIU Tianqi, LIU Xuan, et al. Low-carbon economic dispatch of multi-energy park considering high proportion of renewable energy[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1586-1597. | |
[18] | 胡福年, 徐伟成, 陈军. 计及电动汽车充电负荷的风电-光伏-光热联合系统协调调度[J]. 电力系统保护与控制, 2021, 49(13): 10-20. |
HU Funian, XU Weicheng, CHEN Jun. Coordinated scheduling of wind power photovoltaic solar thermal combined system considering electric vehicle charging load[J]. Power System Protection & Control, 2021, 49(13): 10-20. | |
[19] | 王晞, 徐浩, 王海燕, 等. 考虑风电和电动汽车不确定性的综合能源系统日前经济调度[J]. 电力建设, 2020, 41(12): 82-91. |
WANG Xi, XU Hao, WANG Haiyan, et al. Day-ahead economic dispatch of integrated energy system considering uncertainties of wind power and electric vehicles[J]. Electric Power Construction, 2020, 41(12): 82-91. | |
[20] | 彭巧, 王秀丽, 邵成成, 等. 计及信息间隙决策理论的含电动汽车充电负荷的微电网多目标规划[J]. 电力自动化设备, 2021, 41(1): 128-134. |
PENG Qiao, WANG Xiuli, SHAO Chengcheng, et al. Multi-objective planning of microgrid with electric vehicle charging load based on information gap decision theory[J]. Electric Power Automation Equipment, 2021, 41(1): 128-134. | |
[21] | 侯慧, 刘鹏, 黄亮, 等. 考虑不确定性的电-热-氢综合能源系统规划[J]. 电工技术学报, 2021, 36(Sup.1): 133-144. |
HOU Hui, LIU Peng, HUANG Liang, et al. Planning of electricity-heat-hydrogen integrated energy system considering uncertainties[J]. Transactions of China Electrotechnical Society, 2021, 36(Sup.1): 133-144. | |
[22] | 赵东声, 高忠臣, 刘伟. 碳捕集火电与梯级水电联合优化的低碳节能发电调度[J]. 电力系统保护与控制, 2019, 47(15): 148-155. |
ZHAO Dongsheng, GAO Zhongchen, LIU Wei. Low-carbon energy-saving power generation dispatching optimized by carbon capture thermal power and cascade hydropower[J]. Power System Protection & Control, 2019, 47(15): 148-155. | |
[23] | LI Y, WANG B, YANG Z, et al. Optimal scheduling of integrated demand response-enabled community-integrated energy systems in uncertain environments[J]. IEEE Transactions on Industry Applications, 2021, 58(2): 2640-2651. |
[24] | 卢炳文, 魏震波, 魏平桉, 等. 考虑多重区间不确定性的用户侧综合能源系统双层优化配置[J]. 中国电力, 2022, 55(3): 193-202. |
LU Bingwen, WEI Zhenbo, WEI Ping’an, et al. Two-level optimal configuration of user-side integrated energy system considering interval uncertainties[J]. Electric Power, 2022, 55(3): 193-202. | |
[25] | HE C, WU L, LIU T Q, et al. Co-optimization scheduling of interdependent power and gas systems with electricity and gas uncertainties[J]. Energy, 2018, 159: 1003-1015. |
[26] | 马燕峰, 范振亚, 刘伟东, 等. 考虑碳权交易和风荷预测误差随机性的环境经济调度[J]. 电网技术, 2016, 40(2): 412-418. |
MA Yanfeng, FAN Zhenya, LIU Weidong, et al. Environmental and economic dispatch considering carbon trading credit and randomicity of wind power and load forecast error[J]. Power System Technology, 2016, 40(2): 412-418. | |
[27] | 林顺富, 刘持涛, 李东东, 等. 考虑电能交互的冷热电区域多微网系统双层多场景协同优化配置[J]. 中国电机工程学报, 2020, 40(5): 1409-1420. |
LIN Shunfu, LIU Chitao, LI Dongdong, et al. Bi-level multiple scenarios collaborative optimization configuration of CCHP regional multi-microgrid system considering power interaction among microgrids[J]. Proceedings of the CSEE, 2020, 40(5): 1409-1420. |
/
〈 |
|
〉 |