船舶海洋与建筑工程

考虑竖向荷载作用时液化土中群桩基础水平动力响应

展开
  • 1.浙江大学 滨海和城市岩土工程研究中心, 杭州 310058
    2.浙江大学 浙江省城市地下空间开发工程技术研究中心, 杭州 310058
    3.浙江科技学院 土木与建筑工程学院,杭州 310023
    4.浙江省建筑设计研究院,杭州 310006
胡安峰(1974-),教授,博士生导师,从事桩基工程、软黏土力学研究.
肖志荣,副教授;E-mail:100106@zust.edu.cn.

收稿日期: 2023-01-09

  修回日期: 2023-03-17

  录用日期: 2023-03-24

  网络出版日期: 2023-04-04

基金资助

国家自然科学基金(51978612)

Horizontal Dynamic Response of Pile Group Foundation in Liquefied Soil Under Vertical Load

Expand
  • 1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
    2. Engineering Research Center of Urban Underground Space Development of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
    3. School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China
    4. Zhejiang Province Institute of Architectural Design and Research, Hangzhou 310006, China

Received date: 2023-01-09

  Revised date: 2023-03-17

  Accepted date: 2023-03-24

  Online published: 2023-04-04

摘要

基于Biot饱和多孔介质理论,考虑液化土的流动特性,建立考虑竖向荷载作用的部分埋入群桩水平振动模型,通过分离变量法、算子分解法,引入桩土耦合及位移连续条件,得到复杂条件下液化土中高桩桩间相互作用因子解和群桩水平动阻抗解.通过参数分析,表明液化土特性和竖向荷载对桩间水平相互作用因子、群桩动阻抗有显著影响,指出同一频率下,群桩水平动刚度随着表层液化土厚度的增加而下降,当液化厚度较大时,动刚度随频率上升显著下降,并出现负刚度;桩顶竖向荷载会降低液化土中的群桩动刚度,液化土厚度越大,削弱效果越明显.

本文引用格式

胡安峰, 陈奕扬, 肖志荣, 陈正 . 考虑竖向荷载作用时液化土中群桩基础水平动力响应[J]. 上海交通大学学报, 2024 , 58(7) : 1075 -1085 . DOI: 10.16183/j.cnki.jsjtu.2023.007

Abstract

The horizontal vibration model of partially buried pile group under vertical load is established based on Biot saturated porous media theory, considering the flow characteristics of liquefied soil. Considering the pile-soil coupling and continuous displacement conditions, the pile interaction factor solutions and the horizontal dynamic pile impedance solutions in liquefied soil under complex conditions are obtained using the variable separation method and the operator decomposition method. Parameter studies are conducted on liquefied soil characteristics and vertical loadings. The results show that at the same vibration frequency, the horizontal dynamic.pngfness of pile group decreases with the increase of surface liquefied soil thickness. When the liquefaction thickness is large, the dynamic.pngfness decreases significantly with the increase of frequency, and a negative.pngfness appears. Vertical pile top loading can reduce the dynamic.pngfness of pile group in liquefaction soils. The weakening effect becomes more obvious with the increase in the thickness of liquefied soil.

参考文献

[1] ZHANG J, WANG H. Development of offshore wind power and foundation technology for offshore wind turbines in China[J]. Ocean Engineering, 2022, 266: 113256.
[2] 胡安峰, 南博文, 陈缘, 等. 基于砂土刚度衰减模型的修正p-y曲线法[J]. 上海交通大学学报, 2020, 54(12): 1316-1323.
  HU Anfeng, NAN Bowen, CHEN Yuan, et al. Modified p-y curves method based on degradation.pngfness model of sand[J]. Journal of Shanghai Jiao Tong University, 2020, 54(12): 1316-1323.
[3] DERKAOUI M, MISSOUM H, BENDANI K, et al. Shear behavior of sand-silt mixtures: A laboratory investigation of coastal silty sand soils of Mostaganem[J]. Marine Georesources & Geotechnology, 2016, 34(7): 668-680.
[4] XU L, ZHANG J, CAI F, et al. Constitutive modeling the undrained behaviors of sands with non-plastic fines under monotonic and cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2019, 123: 413-424.
[5] SUMER B M. Liquefaction around marine structures[C]//Coastal Structures—Coastal Structures International Conference. Singapore: World Scie.pngic Publishing Co., Pte. Ltd., 2009: 11.
[6] NOVAK M, SHETA M. Dynamic response of piles and pilegroups[C]// Proceedings of the 2nd International Conference on Numerical Methods for Offshore Piling. Austin:[s.n.], 1982: 1-18.
[7] POULOS H G. Analysis of the settlement of pile groups[J]. Géotechnique, 1968, 18(4): 449-471.
[8] POULOS H G, DAVIS E H. Pile foundation analysis and design[M]. New York,USA: Wiley, 1980: 94-102.
[9] DOBRY R, GAZETAS G. Simple method for dynamic.pngfness and damping of floating pile groups[J]. Géotechnique, 1988, 38(4): 557-574.
[10] 任青, 黄茂松, 韩东晓. 考虑轴力的部分埋入群桩基础水平振动特性[J]. 岩石力学与工程学报, 2011, 30(9): 1932-1944.
  REN Qing, HUANG Maosong, HAN Dongxiao. Lateral vibration properties of partially embedded pile groups foundation considering axial forces[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(9): 1932-1944.
[11] 杨骁, 何光辉. 成层液化土中单桩-土-结构系统的水平振动分析[J]. 上海大学学报(自然科学版), 2011, 17(6): 779-784.
  YANG Xiao, HE Guanghui. Analysis of horizontal vibration of pile-soil-superstructure system in layered liquefiable soil[J]. Journal of Shanghai University (Natural Science), 2011, 17(6): 779-784.
[12] 刘圆圆. 饱和土中桩基的水平动力特性研究[D]. 长沙: 中南大学, 2013.
  LIU Yuanyuan. Horizontal dynamic response of piles and pile groups in saturated soil[D]. Changsha: Central South University, 2013.
[13] 刘林超, 闫启方, 闫盼. 考虑三维波动的饱和土中管桩群桩的水平振动研究[J]. 岩土力学, 2017, 38(10): 2817-2825.
  LIU Linchao, YAN Qifang, YAN Pan. Horizontal vibration of pipe pile groups in saturated soil considering three-dimensional wave effects[J]. Rock and Soil Mechanics, 2017, 38(10): 2817-2825.
[14] 杨丰. 液化土中桩基水平振动响应分析[D]. 长沙: 湖南大学, 2019.
  YANG Feng. Horizontal vibration response analysis of pile foundation in liquefied soil[D]. Changsha: Hunan University, 2019.
[15] 江雅丰. 成层液化土中桩基振动特性分析[D]. 长沙: 湖南大学, 2017.
  JIANG Yafeng. Analysis of vibration characteristics of pile foundation in layered liquefiable soil[D]. Changsha: Hunan University, 2017
[16] WANG L, LAI Y, HONG Y, et al. A unified lateral soil reaction model for monopiles in soft clay considering various length-to-diameter (L/D) ratios[J]. Ocean Engineering, 2020, 212: 107492.
[17] 黄娟, 胡钟伟, 余俊, 等. 基于黏性流体力学的液化土中桩基桩顶阻抗研究[J]. 岩土工程学报, 2023, 45(5): 1063-1071.
  HUANG Juan, HU Zhongwei, YU Jun, et al. Research on pile top impedance of pile foundation in liquefied soil based on viscous fluid mechanics[J]. Chinese Journal of Geotechnical Engineering: 2023, 45(5): 1063-1071.
[18] 付鹏. 复杂条件下桩-土-水耦合体系水平振动理论研究[D]. 杭州: 浙江大学, 2019.
  FU Peng. Theoretical study on horizontal vibration of pile-soil-water coupling system under complex conditions[D]. Hangzhou: Zhejiang University, 2019.
[19] HONG Y, HE B, WANG L Z, et al. Cyclic lateral response and failure mechanisms of semi-rigid pile in soft clay: Centrifuge tests and numerical modelling[J]. Canadian Geotechnical Journal, 2017, 54(6): 806-824.
[20] 龚敏, 朱涛, 陈守祥, 等. 超长期循环荷载作用下海上风机大直径单桩动力特性演变规律研究[J]. 振动与冲击, 2023, 42(1): 259-266.
  GONG Min, ZHU Tao, CHEN Shouxiang, et al. Evolution of dynamic characteristics of large diameter monopile of offshore wind turbine under ultra-long term cyclic load[J]. Journal of Vibration and Shock, 2023, 42(1): 259-266.
[21] KAYNIA A M, KAUSEL E. Dynamic. pngfness and seismic response of pile groups[D]. Cambridge,USA: Massachusetts Institute of Technology, 1982.
[22] 栾鲁宝. 群桩动力相互作用因子与振动响应解析方法研究[D]. 重庆: 重庆大学, 2019.
  LUAN Lubao. Analytical studies on dynamic interaction factors and vibrating responses of pile groups[D]. Chongqing: Chongqing University, 2019.
文章导航

/