机械与动力工程

基于核函数-Wiener过程的轧辊非线性退化建模与剩余寿命预测

展开
  • 上海交通大学 机械与动力工程学院,上海 200240
王汉禹(1997-),硕士生,从事设备退化建模与寿命预测研究.

收稿日期: 2022-01-05

  修回日期: 2022-01-31

  录用日期: 2022-02-16

  网络出版日期: 2023-03-30

基金资助

国家重点研发计划项目(2020YFB1711100);国家自然科学基金(72001138);国家自然科学基金(52005327);国家自然科学基金(72071127)

Nonlinear Degradation Modeling and Residual Life Prediction for Rollers Based on Kernel-based Wiener Process

Expand
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2022-01-05

  Revised date: 2022-01-31

  Accepted date: 2022-02-16

  Online published: 2023-03-30

摘要

在轧钢生产过程中,由于磨损等原因,长时间复杂工况运行下的轧辊工作性能会呈现逐步衰退的特征.考虑轧辊工作环境具有工况复杂、随机干扰强等特点,提出基于核函数-Wiener过程(KWP)退化模型,使用Wiener过程刻画轧辊退化趋势的强随机性特征,引入核函数捕捉轧辊的非线性退化路径,推导贝叶斯框架下参数估计的解析表达式,并构造轧辊可工作转动量的健康指标,进一步预测轧辊剩余寿命(RUL).结合某钢铁公司1580热轧生产线现场数据,所构建模型拟合优度达到0.989,剩余寿命预测误差低于4.7%,相较常见机器学习算法取得了更好效果,有助于提高设备运转效率与安全性并实现视情维护.

本文引用格式

王汉禹, 陈震, 周笛, 陈兆祥, 潘尔顺 . 基于核函数-Wiener过程的轧辊非线性退化建模与剩余寿命预测[J]. 上海交通大学学报, 2023 , 57(8) : 1037 -1045 . DOI: 10.16183/j.cnki.jsjtu.2022.004

Abstract

In the process of steel rolling, due to wear and other reasons, the working performance of the roll under long and complex working conditions has a gradual decline. Considering the characteristics of complex working conditions and strong random interference of the roll working environment, this paper proposed a kernel-based Wiener process (KWP) degradation model to characterize the strong randomness of the roll degradation trend by using the Wiener process, and to capture the nonlinear degradation path of the roll by using the kerna function. This paper derives the analytical expression of parameter estimation in the Bayesian framework, and constructs the health index of the roll working rotation, then predicts the remaining useful life (RUL) of the roll. In combination with the field data of 1580 hot rolling production line of an iron and steel company, the goodness of fit of the model built is 0.989, and the residual life prediction error is less than 4.7%. Compared with the common machine learning algorithm, it has achieved better results, which is helpful to improve the operating efficiency and safety of equipment and achieve maintenance as needed.

参考文献

[1] 郑国栋, 陈其慎, 邢佳韵, 等. 典型国家钢铁产业发展路径与启示[J]. 中国国土资源经济, 2021, 34(8): 51-56.
[1] ZHENG Guodong, CHEN Qishen, XING Jiayun, et al. A prediction model for wear of working rolls in hot rolling mills[J]. Natural Resource Economics of China, 2021, 34(8): 51-56.
[2] PRAKASH G. A Bayesian approach to degradation modeling and reliability assessment of rolling element bearing[J]. Communications in Statistics-Theory and Methods, 2021, 50(23): 5453-5474.
[3] 刘子英, 孙彦广, 宋向荣, 等. 热连轧轧机工作辊磨损预报模型[J]. 热加工工艺, 2015, 44(1): 131-133.
[3] LIU Ziying, SUN Yanguang, SONG Xiangrong, et al. Prediction model of work roll wear for hot tandem rolling mill[J]. Hot Working Technology, 2015, 44(1): 131-133.
[4] CAI J X, CHENG X, ZHAO B J, et al. Study on the corrosion mechanism of the oxide scale on hot rolled steel in an atmospheric environment[J]. Anti-Corrosion Methods and Materials, 2019, 66(5): 613-620.
[5] LIU ZY, GUAN YP, WANG FQ. Model development of work roll wear in hot strip mill[J]. Materials Science and Engineering, 2017, 207(1): 012022.
[6] 杨阳, 苏小平, 赵春磊. 热轧辊表面疲劳寿命研究[J]. 热加工工艺, 2016, 45(1): 151-154.
[6] YANG Yang, SU Xiaoping, ZHAO Chunlei. Research on fatigue life of hot roll surface[J]. Hot Working Technology, 2016, 45(1): 151-154.
[7] 李长生, 张晓明, 刘相华, 等. 轧制过程轧辊磨损数学模型试验研究[J]. 机械工程学报, 2002, 38(7): 28-30.
[7] LI Changsheng, ZHANG Xiaoming, LIU Xianghua, et al. Experimental investigation of mathematic model on rollswear in rolling[J]. Chinese Journal of Mechanical Engineering, 2002, 38(7): 28-30.
[8] 宋光义. 热轧带钢平整机工作辊磨损与工艺参数优化研究[D]. 北京: 北京科技大学, 2019.
[8] SONG Guangyi. Research on work roll wear and process parameter optimization for hot strip skin-pass mill[D]. Beijing: University of Science and Technology Beijing, 2019.
[9] 潘尔顺, 陈震. 高可靠性产品退化建模研究综述[J]. 工业工程与管理, 2015, 20(6): 1-6.
[9] PAN Ershun, CHEN Zhen. Review of degradation model for high reliability products[J]. Industrial Engineering and Management, 2015, 20(6): 1-6.
[10] 吴进, 邱春林, 齐克敏, 等. 热轧精轧轧辊摩擦和磨损研究[J]. 钢铁研究, 2006, 34(6): 31-34.
[10] WU Jin, QIU Chunlin, QI Kemin, et al. Investigation on friction and wear of finishing roll of hot rolling[J]. Research on Iron and Steel, 2006, 34(6): 31-34.
[11] JIAO R H, PENG K X, DONG J. Remaining useful life prediction for a roller in a hot strip mill based on deep recurrent neural networks[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(7): 1345-1354.
[12] 陶红玉, 周炳海. 基于随机退化的串行生产系统机会维护模型[J]. 上海交通大学学报, 2013, 47(12): 1911-1917.
[12] TAO Hongyu, ZHOU Binghai. Opportunistic maintenance model for series production systems based on stochastic degradations[J]. Journal of Shanghai Jiao Tong University, 2013, 47(12): 1911-1917.
[13] GIORGIO M, POSTIGLIONE F, PULCINI G. Bayesian estimation and prediction for the transformed Wiener degradation process[J]. Applied Stochastic Models in Business and Industry, 2020, 36(4): 660-678.
[14] 司小胜, 胡昌华, 李娟, 等. 具有不确定测量的非线性随机退化系统剩余寿命预测[J]. 上海交通大学学报, 2015, 49(6): 855-860.
[14] SI Xiaosheng, HU Changhua, LI Juan, et al. Remaining useful life prediction of nonlinear stochastic degrading systems subject to uncertain measurements[J]. Journal of Shanghai Jiao Tong University, 2015, 49(6): 855-860.
[15] GAO H D, CUI L R, KONG D J. Reliability analysis for a Wiener degradation process model under changing failure thresholds[J]. Reliability Engineering & System Safety, 2018, 171: 1-8.
[16] 郭昊, 张田, 李亚平, 等. 基于逆高斯过程的竞争失效建模研究[J]. 工业工程与管理, 2017, 22(1): 89-94.
[16] GUO Hao, ZHANG Tian, LI Yaping, et al. Research on competing failure modeling based on the inverse Gaussian process[J]. Industrial Engineering and Management, 2017, 22(1): 89-94.
[17] BANNA O, MISHURA Y, SHKLYAR S. Approximation of a wiener process by integrals with respect to the fractional Brownian motion of power functions of a given exponent[J]. Theory of Probability and Mathematical Statistics, 2015, 90: 13-22.
[18] LI J X, WANG Z H, ZHANG Y B, et al. A nonlinear wiener process degradation model with autoregressive errors[J]. Reliability Engineering & System Safety, 2018, 173: 48-57.
[19] TANG J X, ZHENG G H, HE D, et al. Rolling bearing remaining useful life prediction via weight tracking relevance vector machine[J]. Measurement Science and Technology, 2021, 32(2): 12-20.
[20] 林杰, 叶鸿庆, 郑美妹, 等. 基于状态的预防性替换和备件订购联合优化[J]. 工业工程与管理, 2021, 26(6): 1-8.
[20] LIN Jie, YE Hongqing, ZHENG Meimei, et al. Joint condition-based preventive replacement and spare parts provisioning policy[J]. Industrial Engineering and Management, 2021, 26(6): 1-8.
[21] 张洋. 基于相关向量机的锂离子电池在线剩余寿命预测方法研究[D]. 长沙: 国防科学技术大学, 2016.
[21] ZHANG Yang. Online remaining useful life prediction of lithium-ion batteries based on relevance vector machine[D]. Changsha: National University of Defense Technology, 2016.
[22] MACKAY D J C. Bayesian interpolation[J]. Neural Computation, 1992, 4(3): 415-447.
[23] ZHANG C L, HE Y G, YUAN L F, et al. Capacity prognostics of lithium-ion batteries using EMD denoising and multiple kernel RVM[J]. IEEE Access, 2017, 5: 12061-12070.
[24] 周炳海, 侍雨, 张于贤. 考虑质量的退化生产系统可用性中心维护决策[J]. 东北大学学报(自然科学版), 2021, 42(6): 814-820.
[24] ZHOU Binghai, SHI Yu, ZHANG Yuxian. Availability-centered maintenance policies for degrading manufacturing systems considering product quality[J]. Journal of Northeastern University (Natural Science), 2021, 42(6): 814-820.
文章导航

/