新型电力系统与综合能源

基于SLM-RBF的配电网分布式光伏集群智能划分策略

  • 卜强生 ,
  • 吕朋蓬 ,
  • 李炜祺 ,
  • 罗飞 ,
  • 俞婧雯 ,
  • 窦晓波 ,
  • 胡秦然
展开
  • 1.国网江苏省电力有限公司电力科学研究院,南京 210000
    2.东南大学 电气工程学院,南京 210096
卜强生(1983—),高级工程师,从事电力系统优化运行相关研究.
胡秦然,副教授,博士生导师;E-mail:qhu@seu.edu.cn.

收稿日期: 2023-02-06

  修回日期: 2023-03-16

  录用日期: 2023-03-21

  网络出版日期: 2023-03-30

基金资助

国网江苏省电力公司科技项目(SGJSDK00JBJS2100422)

Intelligent Partition Strategy of Distributed Photovoltaic Cluster in Distribution Network Based on SLM-RBF

  • BU Qiangsheng ,
  • Lü Pengpeng ,
  • LI Weiqi ,
  • LUO Fei ,
  • YU Jingwen ,
  • DOU Xiaobo ,
  • HU Qinran
Expand
  • 1. Electric Power Research Institute of State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210000, China
    2. School of Electrical Engineering, Southeast University, Nanjing 210096, China

Received date: 2023-02-06

  Revised date: 2023-03-16

  Accepted date: 2023-03-21

  Online published: 2023-03-30

摘要

分布式电源大规模分散接入给配电网的优化调度带来计算上的维数灾难,需要对分布式电源进行集群以降低调控难度,因此合理的集群划分十分重要.同时,配电网实时量测数据不全造成分布式电源进行实时集群划分难度大、时间效率低,因此提出一种智能局部移动(SLM)算法与径向基神经网络相结合的分布式电源集群智能划分策略.首先,选取有功和无功功率调节范围以及有功和无功功率-电压的灵敏度作为集群划分的指标,构造相似度矩阵并基于SLM形成分布式电源的集群划分方案库.然后,离线建立电压拟合模型,拟合可实时观测节点的功率与电压之间的关系;同时,离线建立电压-划分结果模型,在线通过电压得到实时划分结果,创新性地解决了潮流模型缺失时无法进行集群划分的问题,提高了集群划分的实时性.最后,在MATLAB平台通过仿真计算验证了算法的合理性和优越性.

本文引用格式

卜强生 , 吕朋蓬 , 李炜祺 , 罗飞 , 俞婧雯 , 窦晓波 , 胡秦然 . 基于SLM-RBF的配电网分布式光伏集群智能划分策略[J]. 上海交通大学学报, 2024 , 58(10) : 1534 -1543 . DOI: 10.16183/j.cnki.jsjtu.2023.032

Abstract

Access of large-scale distributed power supply to the distribution network brings dimensionality disaster to the optimal dispatching of the distribution network. Therefore, it is necessary to cluster the distributed power supply to reduce the difficulty of regulation and control, and a reasonable division of distributed power supply cluster is very important. However, the incomplete real-time measurement data of the distribution network has caused difficulty and low time efficiency in real-time cluster division of the distribution network. Therefore, this paper proposes a distributed power cluster division strategy based on the smart local moving (SLM) algorithm and the radial basis function (RBF) neural network. First, the range of active power and reactive power regulation and the sensitivity of active power and reactive power to voltage are selected as the indexes of cluster division. By constructing a similarity matrix, the SLM algorithm is used to form the historical strategy library of cluster division of distributed power sources. Then, a voltage fitting model is established offline, which can observe the relationship between the power and voltage of buses in real time. Meanwhile, a voltage-division result model is established offline, and the real-time division result is obtained through the voltage online, which solves the problem that cluster division cannot be performed when the power flow model is missing, and improves the real-time performance of cluster division. Finally, the rationality and superiority of the algorithm are verified by simulation on MATLAB platform.

参考文献

[1] 陈阳, 谢丽蓉, 马兰, 等. 考虑光伏预测误差兼顾平抑波动的双层储能运行策略[J]. 电力工程技术, 2023(1): 70-79.
  CHEN Yang, XIE Lirong, MA Lan, et al. Double-layer energy storage operation strategy that takes into account PV output error and smooths out fluctuations[J]. Electric Power Engineering Technology, 2023(1): 70-79.
[2] 蒋正威, 张锋明, 胡凤桐, 等. 虚拟电厂分布式资源的聚合响应能力评估方法[J]. 电力工程技术, 2022(6): 39-49.
  JIANG Zhengwei, ZHANG Fengming, HU Fengtong, et al. Evaluation method of aggregated responsiveness of distributedresources in virtual power plant[J]. Electric Power Engineering Technology, 2022(6): 39-49.
[3] 尉同正, 杜红卫, 夏栋, 等. 基于改进K-means算法的分布式发电集群划分方法[J/OL]. 华东电力大学学报. http://kns.cnki.net/kcms/detail/13.1212.TM.20230217.1641.004.html.
  WEI Tongzheng, DU Hongwei, XIA Dong, et al. Distributed power cluster partitioning method based on LGWO improved K-means clustering algorithm[J]. Journal of North China Electric Power University. http://kns.cnki.net/kcms/detail/13.1212.TM.20230217.1641.004.html.
[4] WANG X X, WANG C S, XU T, et al. Optimal voltage regulation for distribution networks with multi-microgrids[J]. Applied Energy, 2018, 210: 1027-1036.
[5] 张琳娟, 张平, 卢丹, 等. 基于“云-群-端”架构分布式光伏群调群控策略研究[J/OL]. 电测与仪表. https://kns.cnki.net/kcms/detail/23.1202.TH.20230207.1129.002.html.
  ZHANG Linjuan, ZHANG Ping, LU Dan, et al. Research on group control strategy of distributed photovoltaic based on “cloud-group-end” architecture[J/OL]. Electrical Measurement & Instrumentation. https://kns.cnki.net/kcms/detail/23.1202.TH.20230207.1129.002.html.
[6] 文鑫浩, 赵兴雨, 战姿彤, 等. 有源配电网集群电压协调优化控制方法[J]. 山东电力技术, 2022, 49(10): 1-8.
  WEN Xinhao, ZHAO Xingyu, ZHAN Zitong, et al. Optimized voltage control for active distribution network based on cluster partition[J]. Shandong Electric Power, 2022, 49(10): 1-8.
[7] LI P S, WU Z J, MENG K, et al. Decentralized optimal reactive power dispatch of optimally partitioned distribution networks[J]. IEEE Access, 2018, 6: 74051-74060.
[8] 盛万兴, 吴鸣, 季宇, 等. 分布式可再生能源发电集群并网消纳关键技术及工程实践[J]. 中国电机工程学报, 2019, 39(8): 2175-2186.
  SHENG Wanxing, WU Ming, JI Yu, et al. Key techniques and engineering practice of distributed renewable generation clusters integration[J]. Proceedings of the CSEE, 2019, 39(8): 2175-2186.
[9] 梁志峰, 叶畅, 刘子文, 等. 分布式电源集群并网调控: 体系架构与关键技术[J]. 电网技术, 2021, 45(10): 3791-3802.
  LIANG Zhifeng, YE Chang, LIU Ziwen, et al. Grid-connected scheduling and control of distributed generations clusters: Architecture and key technologies[J]. Power System Technology, 2021, 45(10): 3791-3802.
[10] 卢俊杰, 蔡涛, 郎建勋, 等. 基于集群划分的光伏电站集群发电功率短期预测方法[J]. 高电压技术, 2022, 48(5): 1943-1951.
  LU Junjie, CAI Tao, LANG Jianxun, et al. Short-term power output forecasting of clustered photovoltaic solar plants based on cluster partition[J]. High Voltage Engineering, 2022, 48(5): 1943-1951.
[11] CHEN W Y, SONG Y Q, BAI H J, et al. Parallel spectral clustering in distributed systems[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(3): 568-586.
[12] CHEN C M, PI D C, FANG Z R. Artificial immune K-means grid-density clustering algorithm for real-time monitoring and analysis of urban traffic[J]. Electronics Letters, 2013, 49(20): 1272-1273.
[13] 李翠萍, 东哲民, 李军徽, 等. 配电网分布式储能集群调压控制策略[J]. 电力系统自动化, 2021, 45(4): 133-141.
  LI Cuiping, DONG Zhemin, LI Junhui, et al. Control strategy of voltage regulation for distributed energy storage cluster in distribution network[J]. Automation of Electric Power Systems, 2021, 45(4): 133-141.
[14] MEYERHENKE H, SANDERS P, SCHULZ C. Parallel graph partitioning for complex networks[J]. IEEE Transactions on Parallel & Distributed Systems, 2017, 28(9): 2625-2638.
[15] 窦晓波, 常莉敏, 倪春花, 等. 面向分布式光伏虚拟集群的有源配电网多级调控[J]. 电力系统自动化, 2018, 42(3): 21-31.
  DOU Xiaobo, CHANG Limin, NI Chunhua, et al. Multi-level dispatching and control of active distribution network for virtual cluster of distributed photovoltaic[J]. Automation of Electric Power Systems, 2018, 42(3): 21-31.
[16] 王磊, 张帆, 寇凌峰, 等. 基于Fast Unfolding聚类算法的规模化分布式光伏电源集群划分[J]. 太阳能学报, 2021, 42(10): 29-34.
  WANG Lei, ZHANG Fan, KOU Lingfeng, et al. Large-scale distributed PV cluster division based on fast unfolding clustering algorithm[J]. Acta Energiae Solaris Sinica, 2021, 42(10): 29-34.
[17] 叶畅, 伊华茂, 朱炯达, 等. 考虑灵活性供需平衡及响应速度的分布式电源集群划分方法[J]. 中国电力, 2023, 56(2): 150-156.
  YE Chang, YI Huamao, ZHU Jiongda, et al. A cluster partition method for distributed generation considering flexibility supply-demand balance and response speed[J]. Electric Power, 2023, 56(2): 150-156.
[18] 石博, 肖传亮, 彭克, 等. 基于集群划分的配电网网-源-储双层联合扩展规划策略[J]. 电力系统自动化, 2023, 47(14): 43-51.
  SHI Bo, XIAO Chuanliang, PENG Ke, et al. Cluster partition based two-layer expansion planning of grid-resource-storage for distribution networks[J]. Automation of Electric Power Systems, 2023, 47(14): 43-51.
[19] 肖传亮, 赵波, 周金辉, 等. 配电网中基于网络分区的高比例分布式光伏集群电压控制[J]. 电力系统自动化, 2017, 41(21): 147-155.
  XIAO Chuanliang, ZHAO Bo, ZHOU Jinhui, et al. Network partition based cluster voltage control of high-penetration distributed photovoltaic systems in distribution networks[J]. Automation of Electric Power Systems, 2017, 41(21): 147-155.
[20] 张勇军, 刘斯亮, 江金群, 等. 低压智能配电网技术研究综述[J]. 广东电力, 2019, 32(1): 1-12.
  ZHANG Yongjun, LIU Siliang, JIANG Jinqun, et al. Research review on low-voltage intelligent distribution network technology[J]. Guangdong Electric Power, 2019, 32(1): 1-12.
[21] 倪春花. 基于分布式光伏集群的配电网电压多级协调控制[D]. 南京: 东南大学, 2017.
  NI Chunhua. Research on distributed photovoltaic cluster based multi-level coordinated voltage control in distribution network[D]. Nanjing: Southeast University, 2017.
[22] 邓鹏, 刘敏. 基于改进聚类和RBF神经网络的台区电网线损计算研究[J]. 智慧电力, 2021, 49(2): 107-113.
  DENG Peng, LIU Min. Power line loss calculation in low voltage region based on improved clustering algorithm and RBF neural network[J]. Smart Power, 2021, 49(2): 107-113.
[23] 张宇精, 乔颖, 鲁宗相, 等. 含高比例分布式电源接入的低感知度配电网电压控制方法[J]. 电网技术, 2019, 43(5): 1528-1535.
  ZHANG Yujing, QIAO Ying, LU Zongxiang, et al. Voltage control for partially visible distribution networks with high dg penetration[J]. Power System Technology, 2019, 43(5): 1528-1535.
[24] 胡珺如, 窦晓波, 李晨, 等. 面向中低压配电网的分布式协同无功优化策略[J]. 电力系统自动化, 2021, 45(22): 47-54.
  HU Junru, DOU Xiaobo, LI Chen, et al. Distributed cooperative reactive power optimization strategy for medium-and low-voltage distribution network[J]. Automation of Electric Power Systems: 2021, 45(22): 47-54.
文章导航

/