航空航天

水滴在气流中变形破碎过程的数值模拟研究

展开
  • 1.同济大学 航空航天与力学学院,上海 200092
    2.上海市地面交通工具空气动力学与热环境模拟重点实验室,上海 201804
    3.同济大学 机械与能源工程学院,上海 201804
    4.中国航发商用航空发动机有限责任公司,上海 201108
桑 旭(2000-),硕士生,从事飞行器结冰机理研究.

收稿日期: 2022-10-20

  修回日期: 2023-03-06

  录用日期: 2023-03-24

  网络出版日期: 2023-04-03

基金资助

国家数值风洞工程项目(NNW2019ZT2-B26)

Numerical Study of Deformation and Breakup Processes of Water Droplets in Air Flow

Expand
  • 1. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
    2. Shanghai Key Laboratory of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Shanghai 201804, China
    3. School of Mechanical Engineering, Tongji University, Shanghai 201804, China
    4. AECC Commercial Aircraft Engine Co., Ltd., Shanghai 201108, China

Received date: 2022-10-20

  Revised date: 2023-03-06

  Accepted date: 2023-03-24

  Online published: 2023-04-03

摘要

针对水滴在结冰风洞实验中加速过程内易发生破碎而导致试验段内水滴粒径分布难以符合结冰气象条件的问题,利用流体体积(VOF)方法,模拟了直径为100、200、400、600、800、1 000 μm 以及 1 200 μm 的水滴在不同气流速度作用下(20、50、80 m/s)的变形破碎情况.结果表明:在20 m/s气流作用下,直径为600 μm的水滴不发生破碎;当风速为50 m/s时,直径为100 μm的水滴不发生破碎;随着韦伯数增加,最大不稳定波波长也随之增大,水滴的破碎模式从袋状破碎变为包-蕊状破碎,随后转变为蕊-层状破碎,进一步转变为剪切破碎.水滴的破碎形式包括袋状破碎、包-蕊状破碎、蕊-层状破碎及剪切破碎,会对面积最大的液滴与初始液滴面积之比有较大影响.在初始水滴直径相同的条件下,入口速度越大,破碎后的面积比越大.

本文引用格式

桑旭, 金哲岩, 杨志刚, 余放 . 水滴在气流中变形破碎过程的数值模拟研究[J]. 上海交通大学学报, 2024 , 58(4) : 419 -427 . DOI: 10.16183/j.cnki.jsjtu.2022.414

Abstract

Aimed at the problem that water droplets are easy to break up during the acceleration process in icing wind tunnel experiment, which makes it difficult for the particle size distribution of water droplets in the test section to conform to the icing weather conditions, the deformation and breakup regime of water droplets with a diameter of 100, 200, 400, 600, 800, 1 000 and 1 200 μm under the action of different air velocities(20, 50, and 80 m/s) are simulated by using the volume of fluid (VOF) method. The results show that under the action of 20 m/s air flow, the water droplet with a diameter of 600 μm does not break. Under the action of 50 m/s air flow, the water droplet with a diameter of 100 μm does not break. With the increase of Weber number, the wavelength of the most destructive wave also increases, and the breakup regime of water droplets changes from bag breakup to bag-plume breakup, to plume-shear breakup, and to shear breakup successively. The droplet breakup regime, including the bag breakup, bag/plume breakup, the plume/sheet-thinning breakup, and the shear breakup, has a significant effect on the ratio of the area of the largest droplet to the initial droplet. Under the condition that the initial drop diameter is the same, as the inlet velocity increases, the area ratio after breakup increases.

参考文献

[1] 战培国. 美国NASA结冰试验设备体系综述[J]. 航空科学技术, 2021, 32(5): 1-6.
  ZHAN Peiguo. Review on the system of icing facilities in NASA[J]. Aeronautical Science & Technology, 2021, 32(5): 1-6.
[2] 符澄, 宋文萍, 彭强, 等. 结冰风洞过冷大水滴结冰条件模拟能力综述[J]. 实验流体力学, 2017, 31(4): 1-7.
  FU Cheng, SONG Wenping, PENG Qiang, et al. An overview of supercooled large droplets icing condition simulation capability in icing wind tunnels[J]. Journal of Experiment in Fluid Mechanics, 2017, 31(4): 1-7.
[3] Federal Aviation Administration. Airplane and engine certification requirements in supercooled large drop, mixed phase, and ice crystal icing conditions[S]. Washington: FAA, 2014.
[4] 陈舒越, 郭向东, 王梓旭, 等. 结冰风洞过冷大水滴粒径测量初步研究[J]. 实验流体力学, 2021, 35(3): 22-29.
  CHEN Shuyue, GUO Xiangdong, WANG Zixu, et al. Preliminary reasearch on size measurement of supercooled large droplet in icing wind tunnel[J]. Journal Experiments in Fluid Mechanics, 2021, 35(3): 22-29.
[5] 陈勇, 孔维梁, 刘洪. 飞机过冷大水滴结冰气象条件运行设计挑战[J]. 航空学报, 2023, 44(1): 15.
  CHEN Yong, KONG Weiliang, LIU Hong. The challenge of aircraft design under operational conditions of supercooled large water droplets icing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 15.
[6] LANKFORD T T. 飞机结冰[M]. 上海: 上海交通大学出版社, 2020: 20-32.
  LANKFORD T T. Aircraft icing[M]. Shanghai: Shanghai Jiao Tong University Press, 2020: 20-32.
[7] 易贤, 马洪林, 王开春, 等. 结冰风洞液滴运动及传质传热特性分析[J]. 四川大学学报(工程科学版), 2012, 44 (Sup.2): 132-135.
  YI Xian, MA Honglin, WANG Kaichun, et al. Analysis of water droplet movement and heat/mass transfer in an icing wind tunnel[J]. Journal of Sichuan University (Engineer Science Edition), 2012, 44 (Sup.2): 132-135.
[8] 李晓峰, 常士楠, 冷梦尧. 冰风洞内水滴参数沿程变化的数值模拟[J]. 计算机仿真, 2018, 35(10): 66-71.
  LI Xiaofeng, CHANG Shinan, LENG Mengyao. Numerical simulation of water droplet parameters variation along the icing wind tunnel[J]. Computer Simulation, 2018, 35(10): 66-71.
[9] 郭向东, 王梓旭, 李明, 等. 结冰风洞中液滴相变效应数值模拟[J]. 航空学报, 2018, 39(3): 36-48.
  GUO Xiangdong, WANG Zixu, LI Ming et al. Numerical investigation of phase transition effects of droplet in icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 36-48.
[10] POTAPCZUK M G, TSAO J. Bimodal SLD ice accretion on swept NACA 0012 airfoil models: AIAA 2020-2814[R]. VIRTUAL EVENT: AIAA, 2020.
[11] 符澄, 徐兵兵, 彭强, 等. 结冰风洞中SLD模拟方法及其实验验证研究[C]// 中国力学大会论文集. 杭州: CCTAM, 2019: 2851-2857.
  FU Cheng, XU Bingbing, PENG Qiang, et al. The SLD simulation method and experiment study of icing wind tunnel[C]// Proceedings of the Chinese Congress of Theoretical and Applied Mechanics. Hangzhou, China: CCTAM, 2019: 2851-2857.
[12] 孔上峰, 封锋, 邓寒玉. 高韦伯数下煤油液滴的破碎机理研究[J]. 实验流体力学, 2017, 31(1): 20-25.
  KONG Shangfeng, FENG Feng, DENG Hanyu. Breakup of a kerosene droplet at high Weber numbers[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 20-25.
[13] 金仁瀚, 刘勇, 王锁芳. 单液滴羽状/液膜稀释破碎特性研究[J]. 推进技术, 2017, 38(4): 885-895.
  JIN Renhan, LIU Yong, WANG Suofang. Experimental investigations of breakup characteristic of single droplet in plume/sheet-thinning breakup regime in airflow[J]. Journal of Propulsion Technology, 2017, 38(4): 885-895.
[14] JACKIW I M, ASHGRIZ N. On aerodynamic droplet breakup[J]. Journal of Fluid Mechanics, 2021, 913(433): A33-A33.
[15] ZHAO H, NGUYEN D, DUKE D J, et al. Effect of turbulence on drop breakup in counter air flow[J]. International Journal of Multiphase Flow, 2019, 120: 103108.
[16] XU Z K, WANG T Y, CHE Z Z. Droplet breakup in airflow with strong shear effect[J]. Journal of Fluid Mechanics, 2022, 941(454): A54.
[17] 楼建锋, 洪滔, 朱建士. 液滴在气体介质中剪切破碎的数值模拟研究[J]. 计算力学学报, 2011, 28(2): 210-213.
  LOU Jianfeng, HONG Tao, ZHU Jianshi. Numerical study on shearing breakup of liquid droplet in gas medium[J]. Chinese Journal of Computational Mechanics, 2011, 28(2): 210-213.
[18] JAIN S S, TYAGI N, PRAKASH R S, et al. Secondary breakup of drops at moderate Weber numbers: Effect of density ratio and Reynolds number[J]. International Journal of Multiphase Flow, 2019, 117: 25-41.
[19] LIANG P Y, EASTES T W, GHARAKHARI A, et al. Computer simulations of drop deformation and drop breakup[C]// 24th Joint Propulsion Conference. Boston, MA, USA: AIAA, 1988: 1-7.
[20] 樊玉光, 宋光辉, 袁淑霞, 等. 气流中液化天然气液滴破碎数值模拟研究[J]. 石油化工, 2021, 50(3): 224-229.
  FAN Yuguang, SONG Guanghui, YUAN Shuxia, et al. Numerical simulation of liquid natural gas droplet breakup in gas phase flow[J]. Petrochemical Technology, 2021, 50(3): 224-229.
[21] LI W, WANG J X, ZHU C L, et al. Deformation and acceleration of water droplet in continuous airflow[J]. Physics of Fluids, 2022, 34(3): 033313.
[22] 刘全忠, 李小斌. 高等流体力学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2018: 179-180.
  LIU Quanzhong, LI Xiaobin. Advanced fluid mechancs[M]. Harbin: Harbin Institute of Technology Press, 2018: 179-180.
[23] ZEESHAN A K, NASEEM A, MARIYAM S, et al. Cell alternation algorithm for simulating bubble growth in boiling flows through volume of fluid (VOF) method in fluent[J]. Alexandria Engineering Journal, 2022, 61(12): 13051-13066.
[24] 凌桂龙. Fluent2020流体计算从入门到精通[M]. 北京: 电子工业出版社, 2021: 110-113.
  LING Guilong. Fluent2020 fluid computing from beginner to proficient[M]. Beijing: Publishing House of Electronics Industry, 2021: 110-113.
[25] 潘丽萍, 王强. 实用多相流数值模拟[M]. 北京: 科学出版社, 2021: 11-15.
  PAN Liping, WANG Qiang. Practical numerical simulation of multiphase flow[M]. Beijing: China Science Publishing, 2021: 11-15.
[26] 杨威, 贾明, 孙凯, 等. 液滴变形-袋式-多模式破碎转换研究[J]. 工程热物理学报, 2017, 38(2): 416-420.
  YANG Wei, JIA Ming, SUN Kai, et al. Investigation on transtions of deformation-bag-multimode breakup for liquid droplets[J]. Journal of Engineering Thermophysics, 2017, 38(2): 416-420.
[27] 杨威, 贾明, 孙凯, 等. 液滴在连续气流作用下的变形与破碎[J]. 内燃机学报, 2018, 36(3): 230-236.
  YANG Wei, JIA Ming, SUN Kai, et al. Droplet deformation and breakup in a continuous gas flow[J]. Transactions of CSICE, 2018, 36(3): 230-236.
[28] ZHAO H, WU Z W, LI W F, et al. Transition Weber number between surfactant-laden drop bag breakup and shear breakup of secondary atomization[J]. Fuel, 2018, 221: 138-143.
[29] 张文英, 常士楠, 蒋斌, 等. 基于VOF方法的大水滴袋状破碎的仿真研究[J]. 空气动力学学报, 2018, 36(4): 605-612.
  ZHANG Wenying, CHANG Shinan, JIANG Bin, et al. Numerical simulation of large droplets in bag breakup regime based on VOF method[J]. Acta Aerodynamica Sinica, 2018, 36(4): 605-612.
[30] 张雨树, 薛雷平. 液滴二次雾化破碎模式数值模拟[J]. 力学季刊, 2015, 36(4): 574-585.
  ZHANG Yushu, XUE Leiping. Numerical simulation of droplet breakup regimes in secondary atomization[J]. Chinese Quarterly of Mechanics, 2015, 36(4): 574-585.
[31] THEOFANOUS T G, LI G J, DINH T N, et al. Aerobreakup in rarefied supersonic gas flows[J]. Journal of Fluids Engineering, 2004, 126(4): 516-527.
[32] LIU A B, MATHER D, REITZ R D. Modeling the effects of drop drag and breakup on fuel sprays[DB/OL]. (1993-03-01) [2022-10-20]. https://ui.adsabs.harvard.edu/abs/1993STIN...9329388L .
[33] HSIANG L, FAETH G. Near-limit drop deformation and secondary breakup[J]. International Journal of Multiphase Flow, 1992, 18(5): 635-652.
[34] GUILDENBECHER D R, RIVERA C L, SOJKA P E, et al. Secondary atomization[J]. Experiments in Fluids, 2009, 46(3): 371-402.
文章导航

/